Do you want to publish a course? Click here

Heat rectification by two qubits coupled with Dzyaloshinskii-Moriya interaction

69   0   0.0 ( 0 )
 Added by Rahul Marathe
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interaction. We derive analytical expressions for heat currents and thermal rectification and provide possible physical mechanisms behind the observed results. We show that the anisotropy of DM interaction in itself is insufficient for heat rectification, and some other form of asymmetry is needed. We employ off-resonant qubits as the source of this asymmetry. We find the regime of parameters for higher rectification factors by examining the analytical expressions of rectification obtained from a global master equation solution. In addition, it is shown that the direction and quality of rectification can be controlled via various system parameters. Furthermore, we compare the influence of different orientations of the DM field anisotropy on the performance of heat rectification.



rate research

Read More

We study in this paper magnetic properties of a system of quantum Heisenberg spins interacting with each other via a ferromagnetic exchange interaction J and an in-plane Dzyaloshinskii-Moriya interaction D. The non-collinear ground state due to the competition between J and D is determined. We employ a self-consistent Greenfunction theory to calculate the spin-wave spectrum and the layer magnetizations at finite T in two and three dimensions as well as in a thin film with surface effects. Analytical details and the validity of the method are shown and discussed.
254 - A. Sud , S. Tacchi , D. Sagkovits 2021
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He$^{+}$ irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He$^{+}$ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies, such as in low-power neuromorphic computing.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet {alpha}-Fe2O3 enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency dependent measurements demonstrate that the observed spin pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in {alpha}-Fe2O3/metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet/nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results highlight the potential opportunities offered by the low-frequency acoustic resonant mode in canted easy-plane antiferromagnets for developing next-generation, functional spintronic devices.
Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Neel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا