Do you want to publish a course? Click here

Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

101   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Neel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.



rate research

Read More

Nowadays, micromagnetic simulations are a common tool for studying a wide range of different magnetic phenomena, including the ferromagnetic resonance. A technique for evaluating reliability and validity of different micromagnetic simulation tools is the simulation of proposed standard problems. We propose a new standard problem by providing a detailed specification and analysis of a sufficiently simple problem. By analyzing the magnetization dynamics in a thin permalloy square sample, triggered by a well defined excitation, we obtain the ferromagnetic resonance spectrum and identify the resonance modes via Fourier transform. Simulations are performed using both finite difference and finite element numerical methods, with textsf{OOMMF} and textsf{Nmag} simulators, respectively. We report the effects of initial conditions and simulation parameters on the character of the observed resonance modes for this standard problem. We provide detailed instructions and code to assist in using the results for evaluation of new simulator tools, and to help with numerical calculation of ferromagnetic resonance spectra and modes in general.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations. The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
We propose a novel micromagnetic standard problem calculating the coercive field for unpinning a domain wall at the interface of a multiphase magnet. This problem is sensitive to discontinuities in material parameters for the exchange interaction, the uniaxial anisotropy, and the spontaneous magnetization. We derive an explicit treatment of jump conditions at material interfaces for the exchange interaction in the finite-difference discretization. The micromagnetic simulation results are compared with analytical solutions and show good agreement. The proposed standard problem is well-suited to test the implementation of both finite-difference and finite-element simulation codes.
We investigate heat rectification in a two-qubit system coupled via the Dzyaloshinskii-Moriya (DM) interaction. We derive analytical expressions for heat currents and thermal rectification and provide possible physical mechanisms behind the observed results. We show that the anisotropy of DM interaction in itself is insufficient for heat rectification, and some other form of asymmetry is needed. We employ off-resonant qubits as the source of this asymmetry. We find the regime of parameters for higher rectification factors by examining the analytical expressions of rectification obtained from a global master equation solution. In addition, it is shown that the direction and quality of rectification can be controlled via various system parameters. Furthermore, we compare the influence of different orientations of the DM field anisotropy on the performance of heat rectification.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا