Do you want to publish a course? Click here

EEG changes and motor deficits in Parkinsons disease patients: Correlation of motor scales and EEG power bands

116   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Over the years motor deficit in Parkinsons Disease (PD) patients was largely studied, however, no consistent pattern of relations between quantitative electroencephalography (qEEG) and motor scales emerged. There is a general lack of information on the relation between EEG changes and scales related to specific motor deficits. Therefore, the study aimed to investigate the relation between brain oscillatory activity alterations (EEG power bands) and most used PD-related motor deficit scales. A positive correlation was found between the freezing of the gait questionnaire (FOGQ) and delta spectral power band (rho=0.67; p=0.008), while a negative correlation with the same scale was observed in the alpha spectral power band (rho=-0.59, p=0.027). Additionally, motor scores measure by motor part of Unified Parkinsons Disease Rating Scale (UPDRS) correlated directly with theta (rho=0.55, p=0.040) and inversely with beta EEG power band (rho=-0.77, p=0.001). No significant correlation was found between spectral powers and Hoehn and Yahr (H&Y), BERG (Berg K. et. al. 1995), Modified Parkinson Activity Scale (MPAS), Six-Minute Walk Test (6MWT) and Timed Up and Go Test (TUG). In conclusion, our study supports the earlier findings suggesting a link between EEG slowing and motor decline, providing more insight into the relation between EEG alteration and deficits in different motor domains. These findings indicate that EEG assessment may be a useful biomarker for objective monitoring of progression and neurophysiological effect of rehabilitation approaches in PDs.

rate research

Read More

The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD patients who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.
Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well addressed if a personalized medication schedule and dosage could be administered to them. However, such personalized medication schedule requires a continuous, objective and precise measurement of motor symptoms experienced by the patients during their regular daily activities. In this work, we propose the use of a wrist-worn smart-watch, which is equipped with 3D motion sensors, for estimating the motor fluctuation severity of PD patients in a free-living environment. We introduce a novel network architecture, a post-training scheme and a custom loss function that accounts for label noise to improve the results of our previous work in this domain and to establish a novel benchmark for nine-level PD motor state estimation.
Mobility is severely impacted in patients with Parkinsons disease (PD), especially when they experience involuntary stopping from the freezing of gait (FOG). Understanding the neurophysiological difference between voluntary stopping and involuntary stopping caused by FOG is vital for the detection and potential intervention of FOG in the daily lives of patients. This study characterised the electroencephalographic (EEG) signature associated with FOG in contrast to voluntary stopping. The protocol consisted of a timed up-and-go (TUG) task and an additional TUG task with a voluntary stopping component, where participants reacted to verbal stop and walk instructions by voluntarily stopping or walking. Event-related spectral perturbation (ERSP) analysis was used to study the dynamics of the EEG spectra induced by different walking phases, which included normal walking, voluntary stopping and episodes of involuntary stopping (FOG), as well as the transition windows between normal walking and voluntary stopping or FOG. These results demonstrate for the first time that the EEG signal during the transition from walking to voluntary stopping is distinguishable from that of the transition to involuntary stopping caused by FOG. The EEG signature of voluntary stopping exhibits a significantly decreased power spectrum compared to that of FOG episodes, with distinctly different patterns in the delta and low-beta power in the central area. These findings suggest the possibility of a practical EEG-based treatment strategy that can accurately predict FOG episodes, excluding the potential confound of voluntary stopping.
We introduce here the idea of Meta-Learning for training EEG BCI decoders. Meta-Learning is a way of training machine learning systems so they learn to learn. We apply here meta-learning to a simple Deep Learning BCI architecture and compare it to transfer learning on the same architecture. Our Meta-learning strategy operates by finding optimal parameters for the BCI decoder so that it can quickly generalise between different users and recording sessions -- thereby also generalising to new users or new sessions quickly. We tested our algorithm on the Physionet EEG motor imagery dataset. Our approach increased motor imagery classification accuracy between 60% to 80%, outperforming other algorithms under the little-data condition. We believe that establishing the meta-learning or learning-to-learn approach will help neural engineering and human interfacing with the challenges of quickly setting up decoders of neural signals to make them more suitable for daily-life.
Convolutional neural networks (CNNs) have become a powerful technique to decode EEG and have become the benchmark for motor imagery EEG Brain-Computer-Interface (BCI) decoding. However, it is still challenging to train CNNs on multiple subjects EEG without decreasing individual performance. This is known as the negative transfer problem, i.e. learning from dissimilar distributions causes CNNs to misrepresent each of them instead of learning a richer representation. As a result, CNNs cannot directly use multiple subjects EEG to enhance model performance directly. To address this problem, we extend deep transfer learning techniques to the EEG multi-subject training case. We propose a multi-branch deep transfer network, the Separate-Common-Separate Network (SCSN) based on splitting the networks feature extractors for individual subjects. We also explore the possibility of applying Maximum-mean discrepancy (MMD) to the SCSN (SCSN-MMD) to better align distributions of features from individual feature extractors. The proposed network is evaluated on the BCI Competition IV 2a dataset (BCICIV2a dataset) and our online recorded dataset. Results show that the proposed SCSN (81.8%, 53.2%) and SCSN-MMD (81.8%, 54.8%) outperformed the benchmark CNN (73.4%, 48.8%) on both datasets using multiple subjects. Our proposed networks show the potential to utilise larger multi-subject datasets to train an EEG decoder without being influenced by negative transfer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا