Do you want to publish a course? Click here

Evaluation of Motor Imagery-Based BCI methods in neurorehabilitation of Parkinsons Disease patients

197   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD patients who performed a total of 14 MI-BCI sessions targeting lower extremities. EEG was recorded during the initial calibration phase of each session, and the specific BCI models were produced by using Spectrally weighted Common Spatial Patterns (SpecCSP), Source Power Comodulation (SPoC) and Filter-Bank Common Spatial Patterns (FBCSP) methods. The results showed that FBCSP outperformed SPoC in terms of accuracy, and both SPoC and SpecCSP in terms of the false-positive ratio. The study also demonstrates that PD patients were capable of operating MI-BCI, although with lower accuracy.



rate research

Read More

Motor-Imagery based BCI (MI-BCI) neurorehabilitation can improve locomotor ability and reduce the deficit symptoms in Parkinsons Disease patients. Advanced Motor-Imagery BCI methods are needed to overcome the accuracy and time-related MI BCI calibration challenges in such patients. In this study, we proposed a Multi-session FBCSP (msFBCSP) based on inter-session transfer learning and we investigated its performance compared to the single-session based FBSCP. The main result of this study is the significantly improved accuracy obtained by proposed msFBCSP compared to single-session FBCSP in PD patients (median 81.3%, range 41.2-100.0% vs median 61.1%, range 25.0-100.0%, respectively; p<0.001). In conclusion, this study proposes a transfer learning-based multi-session based FBCSP approach which allowed to significantly improve calibration accuracy in MI BCI performed on PD patients.
Over the years motor deficit in Parkinsons Disease (PD) patients was largely studied, however, no consistent pattern of relations between quantitative electroencephalography (qEEG) and motor scales emerged. There is a general lack of information on the relation between EEG changes and scales related to specific motor deficits. Therefore, the study aimed to investigate the relation between brain oscillatory activity alterations (EEG power bands) and most used PD-related motor deficit scales. A positive correlation was found between the freezing of the gait questionnaire (FOGQ) and delta spectral power band (rho=0.67; p=0.008), while a negative correlation with the same scale was observed in the alpha spectral power band (rho=-0.59, p=0.027). Additionally, motor scores measure by motor part of Unified Parkinsons Disease Rating Scale (UPDRS) correlated directly with theta (rho=0.55, p=0.040) and inversely with beta EEG power band (rho=-0.77, p=0.001). No significant correlation was found between spectral powers and Hoehn and Yahr (H&Y), BERG (Berg K. et. al. 1995), Modified Parkinson Activity Scale (MPAS), Six-Minute Walk Test (6MWT) and Timed Up and Go Test (TUG). In conclusion, our study supports the earlier findings suggesting a link between EEG slowing and motor decline, providing more insight into the relation between EEG alteration and deficits in different motor domains. These findings indicate that EEG assessment may be a useful biomarker for objective monitoring of progression and neurophysiological effect of rehabilitation approaches in PDs.
Parkinsons disease (PD) is the second most common neurodegenerative disease worldwide and affects around 1% of the (60+ years old) elderly population in industrial nations. More than 80% of PD patients suffer from motor symptoms, which could be well addressed if a personalized medication schedule and dosage could be administered to them. However, such personalized medication schedule requires a continuous, objective and precise measurement of motor symptoms experienced by the patients during their regular daily activities. In this work, we propose the use of a wrist-worn smart-watch, which is equipped with 3D motion sensors, for estimating the motor fluctuation severity of PD patients in a free-living environment. We introduce a novel network architecture, a post-training scheme and a custom loss function that accounts for label noise to improve the results of our previous work in this domain and to establish a novel benchmark for nine-level PD motor state estimation.
Alzheimers disease (AD) and Parkinsons disease (PD) are the two most common neurodegenerative disorders in humans. Because a significant percentage of patients have clinical and pathological features of both diseases, it has been hypothesized that the patho-cascades of the two diseases overlap. Despite this evidence, these two diseases are rarely studied in a joint manner. In this paper, we utilize clinical, imaging, genetic, and biospecimen features to cluster AD and PD patients into the same feature space. By training a machine learning classifier on the combined feature space, we predict the disease stage of patients two years after their baseline visits. We observed a considerable improvement in the prediction accuracy of Parkinsons dementia patients due to combined training on Alzheimers and Parkinsons patients, thereby affirming the claim that these two diseases can be jointly studied.
51 - Jianli Yu , Zhuliang Yu 2020
Objective. Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task. Approach. In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two motor imagery EEG datasets. Main results. In both datasets, XCDC significantly reduces the amount of channels without compromising classification accuracy compared to the all-channel setups. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearsons correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles. Significance. This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا