Do you want to publish a course? Click here

Formation of a highly ordered red phase in a MEH-PPV: polystyrene pseudogels

119   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we demonstrate the formation of a red-phase poly[2-methoxy, 5-(2- ethyl-hexoxy)-1,4-phenylene vinylene-PPV] (MEH-PPV) embedded into a host matrix of highly entangled ultra-high molecular weight polystyrene (MEH-PPV/UHMW PS pseudogel) that allows the simple processing of the MEH-PPV solutions. We processed a red-phase in the gel, the gel shows that the features what have beed demonstrated in the solution can be observed in the processable gel for optoelectronics applications. [Yamagata, Hajime, and Hestand, Nicholas J. and Spano, Frank C. and Ku007fohler, Anna and Scharsich, Christina and Hoffmann, Sebastian T. and Bu007fassler, Heinz, The Journal of Chemical Physics, 2013, 139, 114903]



rate research

Read More

168 - M. J. Deutsch , H. Park 2019
BDMO-PPV is a photoluminescent semiconducting polymer related to others in the well-studied polyphenylene vinylene family such as MEH-PPV. These materials are known for their instability, degradation, and low efficiency in device operations. We report increased internal and external quantum yield in BDMO-PPV during continuous illumination photodegradation through variations in absorbance, scattering, reflectance, and transmittance of the BDMO-PPV solution. We propose the creation of a highly emissive intermediate photoluminescent state responsible for these increased quantum yields.
Searching for performant multiferroic materials attracts general research interests in energy science as they have been increasingly exploited as the conversion media among thermal, electric, magnetic and mechanical energies by using their temperature-dependent ferroic properties. Here we report a material development strategy that guides us to discover a reversible phase-transforming ferroelectric material exhibiting enduring energy harvesting from small temperature differences. The material satisfies the crystallographic compatibility condition between polar and nonpolar phases, which shows only 2.5C thermal hysteresis and high figure of merit. It stably generates 15uA electricity in consecutive thermodynamic cycles in absence of any bias fields. We demonstrate our device to consistently generate 6uA/cm2 current density near 100C over 540 complete phase transformation cycles without any electric and functional degradation. The energy conversion device can light up a LED directly without attaching an external power source. This promising material candidate brings the low-grade waste heat harvesting closer to a practical realization, e.g. small temperature fluctuations around the water boiling point can be considered as a clean energy source.
Magnetic high entropy alloys (HEAs) are a new category of high-performance magnetic materials, with multi-component concentrated compositions and complex multi-phase structures. Although there have been numerous reports of their interesting magnetic properties, there is very limited understanding about the interplay between their hierarchical multi-phase structures and their local magnetic structures. By employing high spatial resolution correlative magnetic, structural and chemical studies, we reveal the influence of a hierarchically decomposed B2 + A2 structure in an AlCo0.5Cr0.5FeNi HEA on the formation of magnetic vortex states within individual A2 (disordered BCC) precipitates, which are distributed in an ordered B2 matrix that is weakly ferromagnetic. Non-magnetic or weakly ferromagnetic B2 precipitates in large magnetic domains of the A2 phase, and strongly magnetic Fe-Co-rich interphase A2 regions, are also observed. These results provide important insight into the origin of coercivity in this HEA, which can be attributed to a complex magnetization process that includes the successive reversal of magnetic vortices.
Lead-free double perovskite halides are emerging optoelectronic materials that are alternatives to lead-based perovskite halides. Recently, single-crystalline double perovskite halides were synthesized, and their intriguing functional properties were demonstrated. Despite such pioneering works, lead-free double perovskite halides with better crystallinity are still in demand for applications to novel optoelectronic devices. Here, we realized highly crystalline Cs2AgBiBr6 single crystals with a well-defined atomic ordering on the microscopic scale. We avoided the formation of Ag vacancies and the subsequent secondary Cs3Bi2Br9 by manipulating the initial chemical environments in hydrothermal synthesis. The suppression of Ag vacancies allows us to reduce the trap density in the as-grown crystals and to enhance the carrier mobility further. Our design strategy is applicable for fabricating other lead-free halide materials with high crystallinity.
In kesterite CZTSSe solar cell research, an asymmetric crystallization profile is often obtained after annealing, resulting in a bilayered or double-layered absorber. So far, only segregated pieces of research exist to characterize this double layer, its formation dynamics and its effect on the performance of devices. Here, we review the existing research on double-layered kesterites and evaluate the different mechanisms proposed. Using a cosputtering-based approach, we show that the two layers can differ significantly in morphology, composition and optoelectronic properties, and complement the results with a statistical dataset of over 850 individual CZTS solar cells. By reducing the absorber thickness from above 1000 nm to 300 nm, we show that the double layer segregation is alleviated. In turn, we see a progressive improvement in the device performance for lower thickness, which alone would be inconsistent with the known case of ultrathin CIGS solar cells. By comparing the results with CZTS grown on monocrystalline Si substrates, without a native Na supply, we show that the alkali metal supply does not determine the double layer formation, but merely reduces the threshold for its occurrence. Instead, we propose that the main formation mechanism is the early migration of Cu to the surface during annealing and formation of Cu2-xS phases, in a self-regulating process akin to the Kirkendall effect. We comment on the generality of the mechanism proposed, comparing our results to other synthesis routes, including our own in-house results from solution processing and pulsed laser deposition of sulfide and oxide-based targets. Although the double layer occurrence largely depends on the kesterite synthesis route, the common factors determining the double layer occurrence appear to be the presence of metallic Cu and/or a chalcogen deficiency in the precursor matrix.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا