No Arabic abstract
Lead-free double perovskite halides are emerging optoelectronic materials that are alternatives to lead-based perovskite halides. Recently, single-crystalline double perovskite halides were synthesized, and their intriguing functional properties were demonstrated. Despite such pioneering works, lead-free double perovskite halides with better crystallinity are still in demand for applications to novel optoelectronic devices. Here, we realized highly crystalline Cs2AgBiBr6 single crystals with a well-defined atomic ordering on the microscopic scale. We avoided the formation of Ag vacancies and the subsequent secondary Cs3Bi2Br9 by manipulating the initial chemical environments in hydrothermal synthesis. The suppression of Ag vacancies allows us to reduce the trap density in the as-grown crystals and to enhance the carrier mobility further. Our design strategy is applicable for fabricating other lead-free halide materials with high crystallinity.
Magnetic insulators have been intensively studied for over 100 years, and they, in particular ferrites, are considered to be the cradle of magnetic exchange interactions in solids. Their wide range of applications include microwave devices and permanent magnets . They are also suitable for spintronic devices owing to their high resistivity, low magnetic damping, and spin-dependent tunneling probabilities. The Curie temperature is the crucial factor determining the temperature range in which any ferri/ferromagnetic system remains stable. However, the record Curie temperature has stood for over eight decades in insulators and oxides (943 K for spinel ferrite LiFe5O8). Here we show that a highly B-site ordered double-perovskite, Sr2(SrOs)O6 (Sr3OsO6), surpasses this long standing Curie temperature record by more than 100 K. We revealed this B-site ordering by atomic-resolution scanning transmission electron microscopy. The density functional theory (DFT) calculations suggest that the large spin-orbit coupling (SOC) of Os6+ 5d2 orbitals drives the system toward a Jeff = 3/2 ferromagnetic (FM) insulating state. Moreover, the Sr3OsO6 is the first epitaxially grown osmate, which means it is highly compatible with device fabrication processes and thus promising for spintronic applications.
Ferromagnetic insulators (FMIs) are one of the most important components in developing dissipationless electronic and spintronic devices. However, since ferromagnetism generally accompanies metallicity, FMIs are innately rare to find in nature. Here, novel room-temperature FMI films are epitaxially synthesized by deliberate control of the ratio of two B-site cations in the double perovskite Sr2FeReO6. In contrast to the known ferromagnetic metallic phase in stoichiometric Sr2FeReO6, a FMI state with a high Curie temperature (Tc~400 K) and a large saturation magnetization (MS~1.8 {mu}B/f.u.) is found in highly cation-ordered Fe-rich phases. The stabilization of the FMI state is attributed to the formation of extra Fe3+-Fe3+ and Fe3+-Re6+ bonding states, which originate from the excess Fe. The emerging FMI state by controlling cations in the epitaxial oxide perovskites opens the door to developing novel oxide quantum materials & heterostructures.
Ba2CoWO6 (BCoW) has been synthesized in polycrystalline form by solid state reaction at 1200C. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Rietveld analysis of the XRD pattern. The crystal structure is cubic, space group Fm-3m (No 225) with the lattice parameter, a=8.210A. Optical band-gap of the present system has been calculated using the UV-Vis Spectroscopy and Kubelka-Munk function, its value being 2.45 eV. A detailed study of the electronic properties has also been carried out using the density functional theory (DFT) techniques implemented on WIEN2k. Importance of electron-electron interaction between the Co ions leading to half-metallic behavior, crystal and exchange splitting together with the hybridization between O and Co, W has been investigated using the total and partial density of states.
A$_2$BB$^prime$X$_6$ halide double perovskites based on bismuth and silver have recently been proposed as potential environmentally-friendly alternatives to lead-based hybrid halide perovskites. In particular, Cs$_2$BiAgX$_6$ (X = Cl, Br) have been synthesized and found to exhibit band gaps in the visible range. However, the band gaps of these compounds are indirect, which is not ideal for applications in thin film photovoltaics. Here, we propose a new class of halide double perovskites, where the B$^{3+}$ and B$^{+}$ cations are In$^{3+}$ and Ag$^{+}$, respectively. Our first-principles calculations indicate that the hypothetical compounds Cs$_2$InAgX$_6$ (X = Cl, Br, I) should exhibit direct band gaps between the visible (I) and the ultraviolet (Cl). Based on these predictions, we attempt to synthesize Cs$_2$InAgCl$_6$ and Cs$_2$InAgBr$_6$, and we succeed to form the hitherto unknown double perovskite Cs$_2$InAgCl$_6$. X-ray diffraction yields a double perovskite structure with space group $Fmoverline{3}m$. The measured band gap is 3.3 eV, and the compound is found to be photosensitive and turns reversibly from white to orange under ultraviolet illumination. We also perform an empirical analysis of the stability of Cs$_2$InAgX$_6$ and their mixed halides based on Goldschmidts rules, and we find that it should also be possible to form Cs$_2$InAg(Cl$_{1-x}$Br$_{x}$)$_6$ for $x<1$. The synthesis of mixed halides will open the way to the development of lead-free double perovskites with direct and tunable band gaps.
Understanding the formation of lead halide (LH) perovskite solution precursors is crucial to gain insight into the evolution of these materials to thin films for solar cells. Using density-functional theory in conjunction with the polarizable continuum model, we investigate 18 complexes with chemical formula PbX$_2$M$_4$, where X = Cl, Br, I and M are common solvent molecules. Through the analysis of structural properties, binding energies, and charge distributions, we clarify the role of halogen species and solvent molecules in the formation of LH perovskite precursors. We find that interatomic distances are critically affected by the halogen species, while the energetic stability is driven by the solvent coordination to the backbones. Regardless of the solvent, lead iodide complexes are more strongly bound than the others. Based on the charge distribution analysis, we find that all solvent molecules bind covalently with the LH backbones and that Pb-I and Pb-Br bonds lose ionicity in solution. Our results contribute to clarify the physical properties of LH perovskite solution precursors and offer a valuable starting point for further investigations on their crystalline intermediates.