Do you want to publish a course? Click here

Persistent double layer formation in kesterite solar cells: a critical review

108   0   0.0 ( 0 )
 Added by Filipe Martinho
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In kesterite CZTSSe solar cell research, an asymmetric crystallization profile is often obtained after annealing, resulting in a bilayered or double-layered absorber. So far, only segregated pieces of research exist to characterize this double layer, its formation dynamics and its effect on the performance of devices. Here, we review the existing research on double-layered kesterites and evaluate the different mechanisms proposed. Using a cosputtering-based approach, we show that the two layers can differ significantly in morphology, composition and optoelectronic properties, and complement the results with a statistical dataset of over 850 individual CZTS solar cells. By reducing the absorber thickness from above 1000 nm to 300 nm, we show that the double layer segregation is alleviated. In turn, we see a progressive improvement in the device performance for lower thickness, which alone would be inconsistent with the known case of ultrathin CIGS solar cells. By comparing the results with CZTS grown on monocrystalline Si substrates, without a native Na supply, we show that the alkali metal supply does not determine the double layer formation, but merely reduces the threshold for its occurrence. Instead, we propose that the main formation mechanism is the early migration of Cu to the surface during annealing and formation of Cu2-xS phases, in a self-regulating process akin to the Kirkendall effect. We comment on the generality of the mechanism proposed, comparing our results to other synthesis routes, including our own in-house results from solution processing and pulsed laser deposition of sulfide and oxide-based targets. Although the double layer occurrence largely depends on the kesterite synthesis route, the common factors determining the double layer occurrence appear to be the presence of metallic Cu and/or a chalcogen deficiency in the precursor matrix.



rate research

Read More

426 - Oki Gunawan , Tayfun Gokmen , 2014
Low open circuit voltage ($V_{OC}$) has been recognized as the number one problem in the current generation of Cu$_{2}$ZnSn(Se,S)$_{4}$ (CZTSSe) solar cells. We report high light intensity and low temperature Suns-$V_{OC}$ measurement in high performance CZTSSe devices. The Suns-$V_{OC}$ curves exhibit bending at high light intensity, which points to several prospective $V_{OC}$ limiting mechanisms that could impact the $V_{OC}$, even at 1 sun for lower performing samples. These V$_{OC}$ limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-$V_{OC}$ measurements with different monochromatic illumination. These limiting factors may also contribute to an artificially lower $J_{SC}$-$V_{OC}$ diode ideality factor.
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding of these processes as the ions may introduce exceptional phenomena such as hysteresis or giant dielectric constants. As a result, the electronic landscape, including its interaction with mobile ions, is difficult to access both experimentally and analytically. To address this challenge, we applied a series of small perturbation techniques including impedance spectroscopy (IS), intensity-modulated photocurrent spectroscopy (IMPS) and intensity-modulated photovoltage spectroscopy (IMVS) to planar $mathrm{MAPbI_3}$ perovskite solar cells. Our measurements indicate that both electronic as well as ionic responses can be observed in all three methods and assigned by literature comparison. The results reveal that the dominant charge-carrier loss mechanism is surface recombination by limitation of the quasi-Fermi level splitting. The interaction between mobile ions and the electronic charge carriers leads to a shift of the apparent diode ideality factor from 0.74 to 1.64 for increasing illumination intensity, despite the recombination mechanism remaining unchanged.
Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a b{eta}-alanine surface treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally stable inverted PSCs. The improved device performance due to b{eta}-alanine-treated Cu:NiOx HTL is attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap density in the bulk perovskite active layer. The b{eta}-alanine surface treatment process on Cu:NiOx HTL eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance under accelerated heat lifetime conditions. By using the proposed surface treatment, we report optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h lifetime under accelerated heat lifetime conditions (60 C, N2).
Following the recent success of monolithically integrated Perovskite/Si tandem solar cells, great interest has been raised in searching for alternative wide bandgap top-cell materials with prospects of a fully earth-abundant, stable and efficient tandem solar cell. Thin film chalcogenides (TFCs) such as the Cu2ZnSnS4 (CZTS) could be suitable top-cell materials. However, TFCs have the disadvantage that generally at least one high temperature step (>500 C) is needed during the synthesis, which could contaminate the Si bottom cell. Here, we systematically investigate the monolithic integration of CZTS on a Si bottom solar cell. A thermally resilient double-sided Tunnel Oxide Passivated Contact (TOPCon) structure is used as bottom cell. A thin (<25 nm) TiN layer between the top and bottom cells, doubles as diffusion barrier and recombination layer. We show that TiN successfully mitigates in-diffusion of CZTS elements into the c-Si bulk during the high temperature sulfurization process, and find no evidence of electrically active deep Si bulk defects in samples protected by just 10 nm TiN. Post-process minority carrier lifetime in Si exceeded 1.5 ,s. i.e., a promising implied open-circuit voltage (i-Voc) of 715 mV after the high temperature sulfurization. Based on these results, we demonstrate a first proof-of-concept two-terminal CZTS/Si tandem device with an efficiency of 1.1% and a Voc of 900 mV. A general implication of this study is that the growth of complex semiconductors on Si using high temperature steps is technically feasible, and can potentially lead to efficient monolithically integrated two-terminal tandem solar cells.
In this research, the effect of Magnesium Fluoride (MgF2) Anti-Reflection (AR) layer was investigated in quantum dot sensitized solar cells (QDSCs). MgF2 nanoparticles with the dominant size of 20 nm were grown by a thermal evaporation method and a thin layer was formed on the front side of the fluorine-doped tin oxide (FTO) substrate. In order to study the effect of the AR layer on the efficiency of solar cells, this substrate was utilized in CdS QDSCs. In this conventional structure of QDSC, TiO2 nanocrystals (NCs) were applied on the FTO substrate, and then it was sensitized with CdS quantum dots (QDs). According to the results, the QDSCs with MgF2 AR layer represented the maximum Power Conversion Efficiency (PCE) of 3%. This efficiency was increased by about 47% compared to the reference cell without the AR layer. The reason is attributed to the presence of the AR layer and the reduction of incident light reflected from the surface of the solar cell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا