Do you want to publish a course? Click here

Environment driven oscillation in an off-lattice May--Leonard model

118   0   0.0 ( 0 )
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Cyclic dominance of competing species is an intensively used working hypothesis to explain biodiversity in certain living systems, where the evolutionary selection principle would dictate a single victor otherwise. Technically the May--Leonard models offer a mathematical framework to describe the mentioned non-transitive interaction of competing species when individual movement is also considered in a spatial system. Emerging rotating spirals composed by the competing species are frequently observed character of the resulting patterns. But how do these spiraling patterns change when we vary the external environment which affects the general vitality of individuals? Motivated by this question we suggest an off-lattice version of the tradition May--Leonard model which allows us to change the actual state of the environment gradually. This can be done by introducing a local carrying capacity parameter which value can be varied gently in an off-lattice environment. Our results support a previous analysis obtained in a more intricate metapopulation model and we show that the well-known rotating spirals become evident in a benign environment when the general density of the population is high. The accompanying time-dependent oscillation of competing species can also be detected where the amplitude and the frequency show a scaling law of the parameter that characterizes the state of the environment. These observations highlight that the assumed non-transitive interaction alone is insufficient condition to maintain biodiversity safely, but the actual state of the environment, which characterizes the general living conditions, also plays a decisive role on the evolution of related systems.



rate research

Read More

We study the induction and stabilization of spiral structures for the cyclic three-species stochastic May-Leonard model with asymmetric predation rates on a spatially inhomogeneous two-dimensional toroidal lattice using Monte Carlo simulations. In an isolated setting, strongly asymmetric predation rates lead to rapid extinction from coexistence of all three species to a single surviving population. Even for weakly asymmetric predation rates, only a fraction of ecologies in a statistical ensemble manages to maintain full three-species coexistence. However, when the asymmetric competing system is coupled via diffusive proliferation to a fully symmetric May-Leonard patch, the stable spiral patterns from this region induce transient plane-wave fronts and ultimately quasi-stationary spiral patterns in the vulnerable asymmetric region. Thus the endangered ecological subsystem may effectively become stabilized through immigration from even a much smaller stable region. To describe the stabilization of spiral population structures in the asymmetric region, we compare the increase in the robustness of these topological defects at extreme values of the asymmetric predation rates in the spatially coupled system with the corresponding asymmetric May-Leonard model in isolation. We delineate the quasi-stationary nature of coexistence induced in the asymmetric subsystem by its diffusive coupling to a symmetric May-Leonard patch, and propose a (semi-)quantitative criterion for the spiral oscillations to be sustained in the asymmetric region.
Non-transitive dominance and the resulting cyclic loop of three or more competing species provide a fundamental mechanism to explain biodiversity in biological and ecological systems. Both Lotka-Volterra and May-Leonard type model approaches agree that heterogeneity of invasion rates within this loop does not hazard the coexistence of competing species. While the resulting abundances of species become heterogeneous, the species who has the smallest invasion power benefits the most from unequal invasions. Nevertheless, the effective invasion rate in a predator and prey interaction can also be modified by breaking the direction of dominance and allowing reversed invasion with a smaller probability. While this alteration has no particular consequence on the behavior within the framework of Lotka-Volterra models, the reactions of May-Leonard systems are highly different. In the latter case, not just the mentioned survival of the weakest effect vanishes, but also the coexistence of the loop cannot be maintained if the reversed invasion exceeds a threshold value. Interestingly, the extinction to a uniform state is characterized by a non-monotonous probability function. While the presence of reversed invasion does not fully diminish the evolutionary advantage of the original predator species, but this weakened effective invasion rate helps the related prey species to collect larger initial area for the final battle between them. The competition of these processes determines the likelihood in which uniform state the system terminates.
Exploring the possible consequences of spatial reciprocity on the evolution of cooperation is an intensively studied research avenue. Related works assumed a certain interaction graph of competing players and studied how particular topologies may influence the dynamical behavior. In this paper we apply a numerically more demanding off-lattice population approach which could be potentially relevant especially in microbiological environments. As expected, results are conceptually similar to those which were obtained for lattice-type interaction graphs, but some spectacular differences can also be revealed. On one hand, in off-lattice populations spatial reciprocity may work more efficiently than for a lattice-based system. On the other hand, competing strategies may separate from each other in the continuous space concept, which gives a chance for cooperators to survive even at relatively high temptation values. Furthermore, the lack of strict neighborhood results in soft borders between competing patches which jeopardizes the long term stability of homogeneous domains. We survey the major social dilemma games based on pair interactions of players and reveal all analogies and differences compared to on-lattice simulations.
76 - Luca DellAnna 2020
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solved exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, Covid-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.
We revisit well-established concepts of epidemiology, the Ising-model, and percolation theory. Also, we employ a spin $S$ = 1/2 Ising-like model and a (logistic) Fermi-Dirac-like function to describe the spread of Covid-19. Our analysis reinforces well-established literature results, namely: emph{i}) that the epidemic curves can be described by a Gaussian-type function; emph{ii}) that the temporal evolution of the accumulative number of infections and fatalities follow a logistic function, which has some resemblance with a distorted Fermi-Dirac-like function; emph{iii}) the key role played by the quarantine to block the spread of Covid-19 in terms of an emph{interacting} parameter, which emulates the contact between infected and non-infected people. Furthermore, in the frame of elementary percolation theory, we show that: emph{i}) the percolation probability can be associated with the probability of a person being infected with Covid-19; emph{ii}) the concepts of blocked and non-blocked connections can be associated, respectively, with a person respecting or not the social distancing, impacting thus in the probability of an infected person to infect other people. Increasing the number of infected people leads to an increase in the number of net connections, giving rise thus to a higher probability of new infections (percolation). We demonstrate the importance of social distancing in preventing the spread of Covid-19 in a pedagogical way. Given the impossibility of making a precise forecast of the disease spread, we highlight the importance of taking into account additional factors, such as climate changes and urbanization, in the mathematical description of epidemics. Yet, we make a connection between the standard mathematical models employed in epidemics and well-established concepts in condensed matter Physics, such as the Fermi gas and the Landau Fermi-liquid picture.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا