Do you want to publish a course? Click here

Knowing More About Questions Can Help: Improving Calibration in Question Answering

155   0   0.0 ( 0 )
 Added by Shujian Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study calibration in question answering, estimating whether model correctly predicts answer for each question. Unlike prior work which mainly rely on the models confidence score, our calibrator incorporates information about the input example (e.g., question and the evidence context). Together with data augmentation via back translation, our simple approach achieves 5-10% gains in calibration accuracy on reading comprehension benchmarks. Furthermore, we present the first calibration study in the open retrieval setting, comparing the calibration accuracy of retrieval-based span prediction models and answer generation models. Here again, our approach shows consistent gains over calibrators relying on the model confidence. Our simple and efficient calibrator can be easily adapted to many tasks and model architectures, showing robust gains in all settings.

rate research

Read More

Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology? To achieve this goal, the first step is to create a visual question answering (VQA) dataset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Our work makes the first attempt to build such a dataset. Different from creating general-domain VQA datasets where the images are widely accessible and there are many crowdsourcing workers available and capable of generating question-answer pairs, developing a medical VQA dataset is much more challenging. First, due to privacy concerns, pathology images are usually not publicly available. Second, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. To address these challenges, we resort to pathology textbooks and online digital libraries. We develop a semi-automated pipeline to extract pathology images and captions from textbooks and generate question-answer pairs from captions using natural language processing. We collect 32,799 open-ended questions from 4,998 pathology images where each question is manually checked to ensure correctness. To our best knowledge, this is the first dataset for pathology VQA. Our dataset will be released publicly to promote research in medical VQA.
A commonly observed problem with the state-of-the art abstractive summarization models is that the generated summaries can be factually inconsistent with the input documents. The fact that automatic summarization may produce plausible-sounding yet inaccurate summaries is a major concern that limits its wide application. In this paper we present an approach to address factual consistency in summarization. We first propose an efficient automatic evaluation metric to measure factual consistency; next, we propose a novel learning algorithm that maximizes the proposed metric during model training. Through extensive experiments, we confirm that our method is effective in improving factual consistency and even overall quality of the summaries, as judged by both automatic metrics and human evaluation.
A question answering (QA) system is a type of conversational AI that generates natural language answers to questions posed by human users. QA systems often form the backbone of interactive dialogue systems, and have been studied extensively for a wide variety of tasks ranging from restaurant recommendations to medical diagnostics. Dramatic progress has been made in recent years, especially from the use of encoder-decoder neural architectures trained with big data input. In this paper, we take initial steps to bringing state-of-the-art neural QA technologies to Software Engineering applications by designing a context-based QA system for basic questions about subroutines. We curate a training dataset of 10.9 million question/context/answer tuples based on rules we extract from recent empirical studies. Then, we train a custom neural QA model with this dataset and evaluate the model in a study with professional programmers. We demonstrate the strengths and weaknesses of the system, and lay the groundwork for its use in eventual dialogue systems for software engineering.
While recent models have achieved human-level scores on many NLP datasets, we observe that they are considerably sensitive to small changes in input. As an alternative to the standard approach of addressing this issue by constructing training sets of completely new examples, we propose doing so via minimal perturbation of examples. Specifically, our approach involves first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Local perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. To evaluate the impact of this phenomenon, we consider a recent question-answering dataset (BoolQ) and study the benefit of our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create, it is more effective to train models using them: such models exhibit higher robustness and better generalization, while retaining performance on the original BoolQ dataset.
103 - Xiaoman Pan , Kai Sun , Dian Yu 2019
We focus on multiple-choice question answering (QA) tasks in subject areas such as science, where we require both broad background knowledge and the facts from the given subject-area reference corpus. In this work, we explore simple yet effective methods for exploiting two sources of external knowledge for subject-area QA. The first enriches the original subject-area reference corpus with relevant text snippets extracted from an open-domain resource (i.e., Wikipedia) that cover potentially ambiguous concepts in the question and answer options. As in other QA research, the second method simply increases the amount of training data by appending additional in-domain subject-area instances. Experiments on three challenging multiple-choice science QA tasks (i.e., ARC-Easy, ARC-Challenge, and OpenBookQA) demonstrate the effectiveness of our methods: in comparison to the previous state-of-the-art, we obtain absolute gains in accuracy of up to 8.1%, 13.0%, and 12.8%, respectively. While we observe consistent gains when we introduce knowledge from Wikipedia, we find that employing additional QA training instances is not uniformly helpful: performance degrades when the added instances exhibit a higher level of difficulty than the original training data. As one of the first studies on exploiting unstructured external knowledge for subject-area QA, we hope our methods, observations, and discussion of the exposed limitations may shed light on further developments in the area.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا