Do you want to publish a course? Click here

Metaphor Generation with Conceptual Mappings

281   0   0.0 ( 0 )
 Added by Kevin Stowe
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generating metaphors is a difficult task as it requires understanding nuanced relationships between abstract concepts. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Guided by conceptual metaphor theory, we propose to control the generation process by encoding conceptual mappings between cognitive domains to generate meaningful metaphoric expressions. To achieve this, we develop two methods: 1) using FrameNet-based embeddings to learn mappings between domains and applying them at the lexical level (CM-Lex), and 2) deriving source/target pairs to train a controlled seq-to-seq generation model (CM-BART). We assess our methods through automatic and human evaluation for basic metaphoricity and conceptual metaphor presence. We show that the unsupervised CM-Lex model is competitive with recent deep learning metaphor generation systems, and CM-BART outperforms all other models both in automatic and human evaluations.



rate research

Read More

Generating metaphors is a challenging task as it requires a proper understanding of abstract concepts, making connections between unrelated concepts, and deviating from the literal meaning. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Based on a theoretically-grounded connection between metaphors and symbols, we propose a method to automatically construct a parallel corpus by transforming a large number of metaphorical sentences from the Gutenberg Poetry corpus (Jacobs, 2018) to their literal counterpart using recent advances in masked language modeling coupled with commonsense inference. For the generation task, we incorporate a metaphor discriminator to guide the decoding of a sequence to sequence model fine-tuned on our parallel data to generate high-quality metaphors. Human evaluation on an independent test set of literal statements shows that our best model generates metaphors better than three well-crafted baselines 66% of the time on average. A task-based evaluation shows that human-written poems enhanced with metaphors proposed by our model are preferred 68% of the time compared to poems without metaphors.
Metaphors are ubiquitous in human language. The metaphor detection task (MD) aims at detecting and interpreting metaphors from written language, which is crucial in natural language understanding (NLU) research. In this paper, we introduce a pre-trained Transformer-based model into MD. Our model outperforms the previous state-of-the-art models by large margins in our evaluations, with relative improvements on the F-1 score from 5.33% to 28.39%. Second, we extend MD to a classification task about the metaphoricity of an entire piece of text to make MD applicable in more general NLU scenes. Finally, we clean up the improper or outdated annotations in one of the MD benchmark datasets and re-benchmark it with our Transformer-based model. This approach could be applied to other existing MD datasets as well, since the metaphoricity annotations in these benchmark datasets may be outdated. Future research efforts are also necessary to build an up-to-date and well-annotated dataset consisting of longer and more complex texts.
Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models -- most recently pre-trained, Transformer language models -- have demonstrated improvements in modeling event plausibility, their performance still falls short of humans. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that a person breathing is plausible while a dentist breathing is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.
163 - Songwei Ge , Devi Parikh 2021
We ask the question: to what extent can recent large-scale language and image generation models blend visual concepts? Given an arbitrary object, we identify a relevant object and generate a single-sentence description of the blend of the two using a language model. We then generate a visual depiction of the blend using a text-based image generation model. Quantitative and qualitative evaluations demonstrate the superiority of language models over classical methods for conceptual blending, and of recent large-scale image generation models over prior models for the visual depiction.
We tackle the problem of identifying metaphors in text, treated as a sequence tagging task. The pre-trained word embeddings GloVe, ELMo and BERT have individually shown good performance on sequential metaphor identification. These embeddings are generated by different models, training targets and corpora, thus encoding different semantic and syntactic information. We show that leveraging GloVe, ELMo and feature-based BERT based on a multi-channel CNN and a Bidirectional LSTM model can significantly outperform any single word embedding method and the combination of the two embeddings. Incorporating linguistic features into our model can further improve model performance, yielding state-of-the-art performance on three public metaphor datasets. We also provide in-depth analysis on the effectiveness of leveraging multiple word embeddings, including analysing the spatial distribution of different embedding methods for metaphors and literals, and showing how well the embeddings complement each other in different genres and parts of speech.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا