Do you want to publish a course? Click here

MERMAID: Metaphor Generation with Symbolism and Discriminative Decoding

456   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generating metaphors is a challenging task as it requires a proper understanding of abstract concepts, making connections between unrelated concepts, and deviating from the literal meaning. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Based on a theoretically-grounded connection between metaphors and symbols, we propose a method to automatically construct a parallel corpus by transforming a large number of metaphorical sentences from the Gutenberg Poetry corpus (Jacobs, 2018) to their literal counterpart using recent advances in masked language modeling coupled with commonsense inference. For the generation task, we incorporate a metaphor discriminator to guide the decoding of a sequence to sequence model fine-tuned on our parallel data to generate high-quality metaphors. Human evaluation on an independent test set of literal statements shows that our best model generates metaphors better than three well-crafted baselines 66% of the time on average. A task-based evaluation shows that human-written poems enhanced with metaphors proposed by our model are preferred 68% of the time compared to poems without metaphors.



rate research

Read More

Generating metaphors is a difficult task as it requires understanding nuanced relationships between abstract concepts. In this paper, we aim to generate a metaphoric sentence given a literal expression by replacing relevant verbs. Guided by conceptual metaphor theory, we propose to control the generation process by encoding conceptual mappings between cognitive domains to generate meaningful metaphoric expressions. To achieve this, we develop two methods: 1) using FrameNet-based embeddings to learn mappings between domains and applying them at the lexical level (CM-Lex), and 2) deriving source/target pairs to train a controlled seq-to-seq generation model (CM-BART). We assess our methods through automatic and human evaluation for basic metaphoricity and conceptual metaphor presence. We show that the unsupervised CM-Lex model is competitive with recent deep learning metaphor generation systems, and CM-BART outperforms all other models both in automatic and human evaluations.
268 - Keren Ye , Adriana Kovashka 2017
In order to convey the most content in their limited space, advertisements embed references to outside knowledge via symbolism. For example, a motorcycle stands for adventure (a positive property the ad wants associated with the product being sold), and a gun stands for danger (a negative property to dissuade viewers from undesirable behaviors). We show how to use symbolic references to better understand the meaning of an ad. We further show how anchoring ad understanding in general-purpose object recognition and image captioning improves results. We formulate the ad understanding task as matching the ad image to human-generated statements that describe the action that the ad prompts, and the rationale it provides for taking this action. Our proposed method outperforms the state of the art on this task, and on an alternative formulation of question-answering on ads. We show additional applications of our learned representations for matching ads to slogans, and clustering ads according to their topic, without extra training.
We introduce Discriminative BLEU (deltaBLEU), a novel metric for intrinsic evaluation of generated text in tasks that admit a diverse range of possible outputs. Reference strings are scored for quality by human raters on a scale of [-1, +1] to weight multi-reference BLEU. In tasks involving generation of conversational responses, deltaBLEU correlates reasonably with human judgments and outperforms sentence-level and IBM BLEU in terms of both Spearmans rho and Kendalls tau.
Understanding speakers feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
Metaphors are ubiquitous in human language. The metaphor detection task (MD) aims at detecting and interpreting metaphors from written language, which is crucial in natural language understanding (NLU) research. In this paper, we introduce a pre-trained Transformer-based model into MD. Our model outperforms the previous state-of-the-art models by large margins in our evaluations, with relative improvements on the F-1 score from 5.33% to 28.39%. Second, we extend MD to a classification task about the metaphoricity of an entire piece of text to make MD applicable in more general NLU scenes. Finally, we clean up the improper or outdated annotations in one of the MD benchmark datasets and re-benchmark it with our Transformer-based model. This approach could be applied to other existing MD datasets as well, since the metaphoricity annotations in these benchmark datasets may be outdated. Future research efforts are also necessary to build an up-to-date and well-annotated dataset consisting of longer and more complex texts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا