No Arabic abstract
These notes stem from lectures given by the first author (JM) at the 2008 Moonshine Conference in Kashiwa and contain a number of new perspectives and observations on Monstrous Moonshine. Because many new points have not appeared anywhere in print, it is thought expedient to update, annotate and clarify them (as footnotes), an editorial task which the second author (YHH) is more than delighted to undertake. We hope the various puzzles and correspondences, delivered in a personal and casual manner, will serve as
David Mumford made groundbreaking contributions in many fields, including the pure mathematics of algebraic geometry and the applied mathematics of machine learning and artificial intelligence. His work in both fields influenced my career at several key moments.
We translate Erland Samuel Brings treatise Meletemata quaedam Mathematica circa Transformationem Aequationum Alebraicarum (Some selected mathematics on the Transformation of Algebraic Equations) written as his Promotionschrift at the University of Lund in 1786, from its Latin into English, with modern mathematical notation. Bring (1736 - 98) made important contributions to algebraic equations and obtained the canonical form x^5+px+q = 0 for quintics before Jerrard, Ruffini and Abel. In due course, he realized the significance of the projective curve which now bears his name: the complete intersection of the homogeneous Fermat polynomials of degrees 1,2,3 in CP^4.
In this note, we provide evidence for new (super) moonshines relating the Monster and the Baby monster to some weakly holomorphic weight 1/2 modular forms defined by Zagier in his work on traces of singular moduli. They are similar in spirit to the recently discovered Thompson moonshine.
This is the text of a series of five lectures given by the author at the Second Annual Spring Institute on Noncommutative Geometry and Operator Algebras held at Vanderbilt University in May 2004. It is meant as an overview of recent results illustrating the interplay between noncommutative geometry and arithmetic geometry/number theory.
The goal of these lectures is to introduce readers with a basic knowledge of undergraduate physics (specifically non-relativistic quantum mechanics, special relativity, and electromagnetism) to the `current theory of everything: the Standard Model of particle of physics. By the end of the course, readers should be able to make predictions for simple processes at the Large Hadron Collider, such as decay rates of the Higgs boson. Some discussion of the ongoing search for physics beyond the Standard Model is also included. Based on lectures given at the Universities of Cambridge (UK) and Canterbury (New Zealand).