Do you want to publish a course? Click here

Robust Mutual Learning for Semi-supervised Semantic Segmentation

95   0   0.0 ( 0 )
 Added by Pan Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent semi-supervised learning (SSL) methods are commonly based on pseudo labeling. Since the SSL performance is greatly influenced by the quality of pseudo labels, mutual learning has been proposed to effectively suppress the noises in the pseudo supervision. In this work, we propose robust mutual learning that improves the prior approach in two aspects. First, the vanilla mutual learners suffer from the coupling issue that models may converge to learn homogeneous knowledge. We resolve this issue by introducing mean teachers to generate mutual supervisions so that there is no direct interaction between the two students. We also show that strong data augmentations, model noises and heterogeneous network architectures are essential to alleviate the model coupling. Second, we notice that mutual learning fails to leverage the networks own ability for pseudo label refinement. Therefore, we introduce self-rectification that leverages the internal knowledge and explicitly rectifies the pseudo labels before the mutual teaching. Such self-rectification and mutual teaching collaboratively improve the pseudo label accuracy throughout the learning. The proposed robust mutual learning demonstrates state-of-the-art performance on semantic segmentation in low-data regime.



rate research

Read More

109 - Yuanyi Zhong , Bodi Yuan , Hong Wu 2021
We present a novel semi-supervised semantic segmentation method which jointly achieves two desiderata of segmentation model regularities: the label-space consistency property between image augmentations and the feature-space contrastive property among different pixels. We leverage the pixel-level L2 loss and the pixel contrastive loss for the two purposes respectively. To address the computational efficiency issue and the false negative noise issue involved in the pixel contrastive loss, we further introduce and investigate several negative sampling techniques. Extensive experiments demonstrate the state-of-the-art performance of our method (PC2Seg) with the DeepLab-v3+ architecture, in several challenging semi-supervised settings derived from the VOC, Cityscapes, and COCO datasets.
Recent semi-supervised learning methods use pseudo supervision as core idea, especially self-training methods that generate pseudo labels. However, pseudo labels are unreliable. Self-training methods usually rely on single model prediction confidence to filter low-confidence pseudo labels, thus remaining high-confidence errors and wasting many low-confidence correct labels. In this paper, we point out it is difficult for a model to counter its own errors. Instead, leveraging inter-model disagreement between different models is a key to locate pseudo label errors. With this new viewpoint, we propose mutual training between two different models by a dynamically re-weighted loss function, called Dynamic Mutual Training (DMT). We quantify inter-model disagreement by comparing predictions from two different models to dynamically re-weight loss in training, where a larger disagreement indicates a possible error and corresponds to a lower loss value. Extensive experiments show that DMT achieves state-of-the-art performance in both image classification and semantic segmentation. Our codes are released at https://github.com/voldemortX/DST-CBC .
Semi-supervised learning has attracted great attention in the field of machine learning, especially for medical image segmentation tasks, since it alleviates the heavy burden of collecting abundant densely annotated data for training. However, most of existing methods underestimate the importance of challenging regions (e.g. small branches or blurred edges) during training. We believe that these unlabeled regions may contain more crucial information to minimize the uncertainty prediction for the model and should be emphasized in the training process. Therefore, in this paper, we propose a novel Mutual Consistency Network (MC-Net) for semi-supervised left atrium segmentation from 3D MR images. Particularly, our MC-Net consists of one encoder and two slightly different decoders, and the prediction discrepancies of two decoders are transformed as an unsupervised loss by our designed cycled pseudo label scheme to encourage mutual consistency. Such mutual consistency encourages the two decoders to have consistent and low-entropy predictions and enables the model to gradually capture generalized features from these unlabeled challenging regions. We evaluate our MC-Net on the public Left Atrium (LA) database and it obtains impressive performance gains by exploiting the unlabeled data effectively. Our MC-Net outperforms six recent semi-supervised methods for left atrium segmentation, and sets the new state-of-the-art performance on the LA database.
In this paper, we study the semi-supervised semantic segmentation problem via exploring both labeled data and extra unlabeled data. We propose a novel consistency regularization approach, called cross pseudo supervision (CPS). Our approach imposes the consistency on two segmentation networks perturbed with different initialization for the same input image. The pseudo one-hot label map, output from one perturbed segmentation network, is used to supervise the other segmentation network with the standard cross-entropy loss, and vice versa. The CPS consistency has two roles: encourage high similarity between the predictions of two perturbed networks for the same input image, and expand training data by using the unlabeled data with pseudo labels. Experiment results show that our approach achieves the state-of-the-art semi-supervised segmentation performance on Cityscapes and PASCAL VOC 2012. Code is available at https://git.io/CPS.
This paper addresses semi-supervised semantic segmentation by exploiting a small set of images with pixel-level annotations (strong supervisions) and a large set of images with only image-level annotations (weak supervisions). Most existing approaches aim to generate accurate pixel-level labels from weak supervisions. However, we observe that those generated labels still inevitably contain noisy labels. Motivated by this observation, we present a novel perspective and formulate this task as a problem of learning with pixel-level label noise. Existing noisy label methods, nevertheless, mainly aim at image-level tasks, which can not capture the relationship between neighboring labels in one image. Therefore, we propose a graph based label noise detection and correction framework to deal with pixel-level noisy labels. In particular, for the generated pixel-level noisy labels from weak supervisions by Class Activation Map (CAM), we train a clean segmentation model with strong supervisions to detect the clean labels from these noisy labels according to the cross-entropy loss. Then, we adopt a superpixel-based graph to represent the relations of spatial adjacency and semantic similarity between pixels in one image. Finally we correct the noisy labels using a Graph Attention Network (GAT) supervised by detected clean labels. We comprehensively conduct experiments on PASCAL VOC 2012, PASCAL-Context and MS-COCO datasets. The experimental results show that our proposed semi supervised method achieves the state-of-the-art performances and even outperforms the fully-supervised models on PASCAL VOC 2012 and MS-COCO datasets in some cases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا