Do you want to publish a course? Click here

DMT: Dynamic Mutual Training for Semi-Supervised Learning

327   0   0.0 ( 0 )
 Added by Zhengyang Feng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recent semi-supervised learning methods use pseudo supervision as core idea, especially self-training methods that generate pseudo labels. However, pseudo labels are unreliable. Self-training methods usually rely on single model prediction confidence to filter low-confidence pseudo labels, thus remaining high-confidence errors and wasting many low-confidence correct labels. In this paper, we point out it is difficult for a model to counter its own errors. Instead, leveraging inter-model disagreement between different models is a key to locate pseudo label errors. With this new viewpoint, we propose mutual training between two different models by a dynamically re-weighted loss function, called Dynamic Mutual Training (DMT). We quantify inter-model disagreement by comparing predictions from two different models to dynamically re-weight loss in training, where a larger disagreement indicates a possible error and corresponds to a lower loss value. Extensive experiments show that DMT achieves state-of-the-art performance in both image classification and semantic segmentation. Our codes are released at https://github.com/voldemortX/DST-CBC .



rate research

Read More

94 - Pan Zhang , Bo Zhang , Ting Zhang 2021
Recent semi-supervised learning (SSL) methods are commonly based on pseudo labeling. Since the SSL performance is greatly influenced by the quality of pseudo labels, mutual learning has been proposed to effectively suppress the noises in the pseudo supervision. In this work, we propose robust mutual learning that improves the prior approach in two aspects. First, the vanilla mutual learners suffer from the coupling issue that models may converge to learn homogeneous knowledge. We resolve this issue by introducing mean teachers to generate mutual supervisions so that there is no direct interaction between the two students. We also show that strong data augmentations, model noises and heterogeneous network architectures are essential to alleviate the model coupling. Second, we notice that mutual learning fails to leverage the networks own ability for pseudo label refinement. Therefore, we introduce self-rectification that leverages the internal knowledge and explicitly rectifies the pseudo labels before the mutual teaching. Such self-rectification and mutual teaching collaboratively improve the pseudo label accuracy throughout the learning. The proposed robust mutual learning demonstrates state-of-the-art performance on semantic segmentation in low-data regime.
Semi-supervised learning has attracted great attention in the field of machine learning, especially for medical image segmentation tasks, since it alleviates the heavy burden of collecting abundant densely annotated data for training. However, most of existing methods underestimate the importance of challenging regions (e.g. small branches or blurred edges) during training. We believe that these unlabeled regions may contain more crucial information to minimize the uncertainty prediction for the model and should be emphasized in the training process. Therefore, in this paper, we propose a novel Mutual Consistency Network (MC-Net) for semi-supervised left atrium segmentation from 3D MR images. Particularly, our MC-Net consists of one encoder and two slightly different decoders, and the prediction discrepancies of two decoders are transformed as an unsupervised loss by our designed cycled pseudo label scheme to encourage mutual consistency. Such mutual consistency encourages the two decoders to have consistent and low-entropy predictions and enables the model to gradually capture generalized features from these unlabeled challenging regions. We evaluate our MC-Net on the public Left Atrium (LA) database and it obtains impressive performance gains by exploiting the unlabeled data effectively. Our MC-Net outperforms six recent semi-supervised methods for left atrium segmentation, and sets the new state-of-the-art performance on the LA database.
360 - Zhanghan Ke , Di Qiu , Kaican Li 2020
We investigate the generalization of semi-supervised learning (SSL) to diverse pixel-wise tasks. Although SSL methods have achieved impressive results in image classification, the performances of applying them to pixel-wise tasks are unsatisfactory due to their need for dense outputs. In addition, existing pixel-wise SSL approaches are only suitable for certain tasks as they usually require to use task-specific properties. In this paper, we present a new SSL framework, named Guided Collaborative Training (GCT), for pixel-wise tasks, with two main technical contributions. First, GCT addresses the issues caused by the dense outputs through a novel flaw detector. Second, the modules in GCT learn from unlabeled data collaboratively through two newly proposed constraints that are independent of task-specific properties. As a result, GCT can be applied to a wide range of pixel-wise tasks without structural adaptation. Our extensive experiments on four challenging vision tasks, including semantic segmentation, real image denoising, portrait image matting, and night image enhancement, show that GCT outperforms state-of-the-art SSL methods by a large margin. Our code available at: https://github.com/ZHKKKe/PixelSSL.
Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods. Code has been made available at https://github.com/google-research/crest.
Semi-Supervised Learning (SSL) has been proved to be an effective way to leverage both labeled and unlabeled data at the same time. Recent semi-supervised approaches focus on deep neural networks and have achieved promising results on several benchmarks: CIFAR10, CIFAR100 and SVHN. However, most of their experiments are based on models trained from scratch instead of pre-trained models. On the other hand, transfer learning has demonstrated its value when the target domain has limited labeled data. Here comes the intuitive question: is it possible to incorporate SSL when fine-tuning a pre-trained model? We comprehensively study how SSL methods starting from pretrained models perform under varying conditions, including training strategies, architecture choice and datasets. From this study, we obtain several interesting and useful observations. While practitioners have had an intuitive understanding of these observations, we do a comprehensive emperical analysis and demonstrate that: (1) the gains from SSL techniques over a fully-supervised baseline are smaller when trained from a pre-trained model than when trained from random initialization, (2) when the domain of the source data used to train the pre-trained model differs significantly from the domain of the target task, the gains from SSL are significantly higher and (3) some SSL methods are able to advance fully-supervised baselines (like Pseudo-Label). We hope our studies can deepen the understanding of SSL research and facilitate the process of developing more effective SSL methods to utilize pre-trained models. Code is now available at github.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا