Do you want to publish a course? Click here

Efficient Explanations With Relevant Sets

46   0   0.0 ( 0 )
 Added by Joao Marques-Silva
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent work proposed $delta$-relevant inputs (or sets) as a probabilistic explanation for the predictions made by a classifier on a given input. $delta$-relevant sets are significant because they serve to relate (model-agnostic) Anchors with (model-accurate) PI- explanations, among other explanation approaches. Unfortunately, the computation of smallest size $delta$-relevant sets is complete for ${NP}^{PP}$, rendering their computation largely infeasible in practice. This paper investigates solutions for tackling the practical limitations of $delta$-relevant sets. First, the paper alternatively considers the computation of subset-minimal sets. Second, the paper studies concrete families of classifiers, including decision trees among others. For these cases, the paper shows that the computation of subset-minimal $delta$-relevant sets is in NP, and can be solved with a polynomial number of calls to an NP oracle. The experimental evaluation compares the proposed approach with heuristic explainers for the concrete case of the classifiers studied in the paper, and confirms the advantage of the proposed solution over the state of the art.

rate research

Read More

To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating Counterfactual Latent Uncertainty Explanations (CLUEs). However, for a single input, such approaches could output a variety of explanations due to the lack of constraints placed on the explanation. Here we augment the original CLUE approach, to provide what we call $delta$-CLUE. CLUE indicates $it{one}$ way to change an input, while remaining on the data manifold, such that the model becomes more confident about its prediction. We instead return a $it{set}$ of plausible CLUEs: multiple, diverse inputs that are within a $delta$ ball of the original input in latent space, all yielding confident predictions.
Feature based local attribution methods are amongst the most prevalent in explainable artificial intelligence (XAI) literature. Going beyond standard correlation, recently, methods have been proposed that highlight what should be minimally sufficient to justify the classification of an input (viz. pertinent positives). While minimal sufficiency is an attractive property, the resulting explanations are often too sparse for a human to understand and evaluate the local behavior of the model, thus making it difficult to judge its overall quality. To overcome these limitations, we propose a novel method called Path-Sufficient Explanations Method (PSEM) that outputs a sequence of sufficient explanations for a given input of strictly decreasing size (or value) -- from original input to a minimally sufficient explanation -- which can be thought to trace the local boundary of the model in a smooth manner, thus providing better intuition about the local model behavior for the specific input. We validate these claims, both qualitatively and quantitatively, with experiments that show the benefit of PSEM across all three modalities (image, tabular and text). A user study depicts the strength of the method in communicating the local behavior, where (many) users are able to correctly determine the prediction made by a model.
89 - Yash Goyal , Ziyan Wu , Jan Ernst 2019
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would output a different specified class $c$. To do this, we select a distractor image $I$ that the system predicts as class $c$ and identify spatial regions in $I$ and $I$ such that replacing the identified region in $I$ with the identified region in $I$ would push the system towards classifying $I$ as $c$. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
There is a rich and growing literature on producing local contrastive/counterfactual explanations for black-box models (e.g. neural networks). In these methods, for an input, an explanation is in the form of a contrast point differing in very few features from the original input and lying in a different class. Other works try to build globally interpretable models like decision trees and rule lists based on the data using actual labels or based on the black-box models predictions. Although these interpretable global models can be useful, they may not be consistent with local explanations from a specific black-box of choice. In this work, we explore the question: Can we produce a transparent global model that is simultaneously accurate and consistent with the local (contrastive) explanations of the black-box model? We introduce a natural local consistency metric that quantifies if the local explanations and predictions of the black-box model are also consistent with the proxy global transparent model. Based on a key insight we propose a novel method where we create custom boolean features from sparse local contrastive explanations of the black-box model and then train a globally transparent model on just these, and showcase empirically that such models have higher local consistency compared with other known strategies, while still being close in performance to models that are trained with access to the original data.
In recent years, post-hoc local instance-level and global dataset-level explainability of black-box models has received a lot of attention. Much less attention has been given to obtaining insights at intermediate or group levels, which is a need outlined in recent works that study the challenges in realizing the guidelines in the General Data Protection Regulation (GDPR). In this paper, we propose a meta-method that, given a typical local explainability method, can build a multilevel explanation tree. The leaves of this tree correspond to the local explanations, the root corresponds to the global explanation, and intermediate levels correspond to explanations for groups of data points that it automatically clusters. The method can also leverage side information, where users can specify points for which they may want the explanations to be similar. We argue that such a multilevel structure can also be an effective form of communication, where one could obtain few explanations that characterize the entire dataset by considering an appropriate level in our explanation tree. Explanations for novel test points can be cost-efficiently obtained by associating them with the closest training points. When the local explainability technique is generalized additive (viz. LIME, GAMs), we develop a fast approximate algorithm for building the multilevel tree and study its convergence behavior. We validate the effectiveness of the proposed technique based on two human studies -- one with experts and the other with non-expert users -- on real world datasets, and show that we produce high fidelity sparse explanations on several other public datasets.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا