Do you want to publish a course? Click here

Towards Better Model Understanding with Path-Sufficient Explanations

268   0   0.0 ( 0 )
 Added by Ronny Luss
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Feature based local attribution methods are amongst the most prevalent in explainable artificial intelligence (XAI) literature. Going beyond standard correlation, recently, methods have been proposed that highlight what should be minimally sufficient to justify the classification of an input (viz. pertinent positives). While minimal sufficiency is an attractive property, the resulting explanations are often too sparse for a human to understand and evaluate the local behavior of the model, thus making it difficult to judge its overall quality. To overcome these limitations, we propose a novel method called Path-Sufficient Explanations Method (PSEM) that outputs a sequence of sufficient explanations for a given input of strictly decreasing size (or value) -- from original input to a minimally sufficient explanation -- which can be thought to trace the local boundary of the model in a smooth manner, thus providing better intuition about the local model behavior for the specific input. We validate these claims, both qualitatively and quantitatively, with experiments that show the benefit of PSEM across all three modalities (image, tabular and text). A user study depicts the strength of the method in communicating the local behavior, where (many) users are able to correctly determine the prediction made by a model.



rate research

Read More

Understanding the interpretation of machine learning (ML) models has been of paramount importance when making decisions with societal impacts such as transport control, financial activities, and medical diagnosis. While current model interpretation methodologies focus on using locally linear functions to approximate the models or creating self-explanatory models that give explanations to each input instance, they do not focus on model interpretation at the subpopulation level, which is the understanding of model interpretations across different subset aggregations in a dataset. To address the challenges of providing explanations of an ML model across the whole dataset, we propose SUBPLEX, a visual analytics system to help users understand black-box model explanations with subpopulation visual analysis. SUBPLEX is designed through an iterative design process with machine learning researchers to address three usage scenarios of real-life machine learning tasks: model debugging, feature selection, and bias detection. The system applies novel subpopulation analysis on ML model explanations and interactive visualization to explore the explanations on a dataset with different levels of granularity. Based on the system, we conduct user evaluation to assess how understanding the interpretation at a subpopulation level influences the sense-making process of interpreting ML models from a users perspective. Our results suggest that by providing model explanations for different groups of data, SUBPLEX encourages users to generate more ingenious ideas to enrich the interpretations. It also helps users to acquire a tight integration between programming workflow and visual analytics workflow. Last but not least, we summarize the considerations observed in applying visualization to machine learning interpretations.
92 - Pan Zhou , Jiashi Feng , Chao Ma 2020
It is not clear yet why ADAM-alike adaptive gradient algorithms suffer from worse generalization performance than SGD despite their faster training speed. This work aims to provide understandings on this generalization gap by analyzing their local convergence behaviors. Specifically, we observe the heavy tails of gradient noise in these algorithms. This motivates us to analyze these algorithms through their Levy-driven stochastic differential equations (SDEs) because of the similar convergence behaviors of an algorithm and its SDE. Then we establish the escaping time of these SDEs from a local basin. The result shows that (1) the escaping time of both SGD and ADAM~depends on the Radon measure of the basin positively and the heaviness of gradient noise negatively; (2) for the same basin, SGD enjoys smaller escaping time than ADAM, mainly because (a) the geometry adaptation in ADAM~via adaptively scaling each gradient coordinate well diminishes the anisotropic structure in gradient noise and results in larger Radon measure of a basin; (b) the exponential gradient average in ADAM~smooths its gradient and leads to lighter gradient noise tails than SGD. So SGD is more locally unstable than ADAM~at sharp minima defined as the minima whose local basins have small Radon measure, and can better escape from them to flatter ones with larger Radon measure. As flat minima here which often refer to the minima at flat or asymmetric basins/valleys often generalize better than sharp ones~cite{keskar2016large,he2019asymmetric}, our result explains the better generalization performance of SGD over ADAM. Finally, experimental results confirm our heavy-tailed gradient noise assumption and theoretical affirmation.
In value-based reinforcement learning (RL), unlike in supervised learning, the agent faces not a single, stationary, approximation problem, but a sequence of value prediction problems. Each time the policy improves, the nature of the problem changes, shifting both the distribution of states and their values. In this paper we take a novel perspective, arguing that the value prediction problems faced by an RL agent should not be addressed in isolation, but rather as a single, holistic, prediction problem. An RL algorithm generates a sequence of policies that, at least approximately, improve towards the optimal policy. We explicitly characterize the associated sequence of value functions and call it the value-improvement path. Our main idea is to approximate the value-improvement path holistically, rather than to solely track the value function of the current policy. Specifically, we discuss the impact that this holistic view of RL has on representation learning. We demonstrate that a representation that spans the past value-improvement path will also provide an accurate value approximation for future policy improvements. We use this insight to better understand existing approaches to auxiliary tasks and to propose new ones. To test our hypothesis empirically, we augmented a standard deep RL agent with an auxiliary task of learning the value-improvement path. In a study of Atari 2600 games, the augmented agent achieved approximately double the mean and median performance of the baseline agent.
In recent years, post-hoc local instance-level and global dataset-level explainability of black-box models has received a lot of attention. Much less attention has been given to obtaining insights at intermediate or group levels, which is a need outlined in recent works that study the challenges in realizing the guidelines in the General Data Protection Regulation (GDPR). In this paper, we propose a meta-method that, given a typical local explainability method, can build a multilevel explanation tree. The leaves of this tree correspond to the local explanations, the root corresponds to the global explanation, and intermediate levels correspond to explanations for groups of data points that it automatically clusters. The method can also leverage side information, where users can specify points for which they may want the explanations to be similar. We argue that such a multilevel structure can also be an effective form of communication, where one could obtain few explanations that characterize the entire dataset by considering an appropriate level in our explanation tree. Explanations for novel test points can be cost-efficiently obtained by associating them with the closest training points. When the local explainability technique is generalized additive (viz. LIME, GAMs), we develop a fast approximate algorithm for building the multilevel tree and study its convergence behavior. We validate the effectiveness of the proposed technique based on two human studies -- one with experts and the other with non-expert users -- on real world datasets, and show that we produce high fidelity sparse explanations on several other public datasets.
The Laplacian representation recently gains increasing attention for reinforcement learning as it provides succinct and informative representation for states, by taking the eigenvectors of the Laplacian matrix of the state-transition graph as state embeddings. Such representation captures the geometry of the underlying state space and is beneficial to RL tasks such as option discovery and reward shaping. To approximate the Laplacian representation in large (or even continuous) state spaces, recent works propose to minimize a spectral graph drawing objective, which however has infinitely many global minimizers other than the eigenvectors. As a result, their learned Laplacian representation may differ from the ground truth. To solve this problem, we reformulate the graph drawing objective into a generalized form and derive a new learning objective, which is proved to have eigenvectors as its unique global minimizer. It enables learning high-quality Laplacian representations that faithfully approximate the ground truth. We validate this via comprehensive experiments on a set of gridworld and continuous control environments. Moreover, we show that our learned Laplacian representations lead to more exploratory options and better reward shaping.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا