Do you want to publish a course? Click here

End-to-end Learning of a Constellation Shape Robust to Variations in SNR and Laser Linewidth

61   0   0.0 ( 0 )
 Added by Ognjen Jovanovic
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose an autoencoder-based geometric shaping that learns a constellation robust to SNR and laser linewidth estimation errors. This constellation maintains shaping gain in mutual information (up to 0.3 bits/symbol) with respect to QAM over various SNR and laser linewidth values.

rate research

Read More

Autoencoder-based geometric shaping is proposed that includes optimizing bit mappings. Up to 0.2 bits/QAM symbol gain in GMI is achieved for a variety of data rates and in the presence of transceiver impairments. The gains can be harvested with standard binary FEC at no cost w.r.t. conventional BICM.
End-to-end mission performance simulators (E2ES) are suitable tools to accelerate satellite mission development from concet to deployment. One core element of these E2ES is the generation of synthetic scenes that are observed by the various instruments of an Earth Observation mission. The generation of these scenes rely on Radiative Transfer Models (RTM) for the simulation of light interaction with the Earth surface and atmosphere. However, the execution of advanced RTMs is impractical due to their large computation burden. Classical interpolation and statistical emulation methods of pre-computed Look-Up Tables (LUT) are therefore common practice to generate synthetic scenes in a reasonable time. This work evaluates the accuracy and computation cost of interpolation and emulation methods to sample the input LUT variable space. The results on MONDTRAN-based top-of-atmosphere radiance data show that Gaussian Process emulators produced more accurate output spectra than linear interpolation at a fraction of its time. It is concluded that emulation can function as a fast and more accurate alternative to interpolation for LUT parameter space sampling.
An end-to-end learning approach is proposed for the joint design of transmitted waveform and detector in a radar system. Detector and transmitted waveform are trained alternately: For a fixed transmitted waveform, the detector is trained using supervised learning so as to approximate the Neyman-Pearson detector; and for a fixed detector, the transmitted waveform is trained using reinforcement learning based on feedback from the receiver. No prior knowledge is assumed about the target and clutter models. Both transmitter and receiver are implemented as feedforward neural networks. Numerical results show that the proposed end-to-end learning approach is able to obtain a more robust radar performance in clutter and colored noise of arbitrary probability density functions as compared to conventional methods, and to successfully adapt the transmitted waveform to environmental conditions.
In this paper, an unsupervised machine learning method for geometric constellation shaping is investigated. By embedding a differentiable fiber channel model within two neural networks, the learning algorithm is optimizing for a geometric constellation shape. The learned constellations yield improved performance to state-of-the-art geometrically shaped constellations, and include an implicit trade-off between amplification noise and nonlinear effects. Further, the method allows joint optimization of system parameters, such as the optimal launch power, simultaneously with the constellation shape. An experimental demonstration validates the findings. Improved performances are reported, up to 0.13 bit/4D in simulation and experimentally up to 0.12 bit/4D.
Recently, deep learning is considered to optimize the end-to-end performance of digital communication systems. The promise of learning a digital communication scheme from data is attractive, since this makes the scheme adaptable and precisely tunable to many scenarios and channel models. In this paper, we analyse a widely used neural network architecture and show that the training of the end-to-end architecture suffers from normalization errors introduced by an average power constraint. To solve this issue, we propose a modified architecture: shifting the batch slicing after the normalization layer. This approach meets the normalization constraints better, especially in the case of small batch sizes. Finally, we experimentally demonstrate that our modified architecture leads to significantly improved performance of trained models, even for large batch sizes where normalization constraints are more easily met.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا