Autoencoder-based geometric shaping is proposed that includes optimizing bit mappings. Up to 0.2 bits/QAM symbol gain in GMI is achieved for a variety of data rates and in the presence of transceiver impairments. The gains can be harvested with standard binary FEC at no cost w.r.t. conventional BICM.
In this paper, an unsupervised machine learning method for geometric constellation shaping is investigated. By embedding a differentiable fiber channel model within two neural networks, the learning algorithm is optimizing for a geometric constellation shape. The learned constellations yield improved performance to state-of-the-art geometrically shaped constellations, and include an implicit trade-off between amplification noise and nonlinear effects. Further, the method allows joint optimization of system parameters, such as the optimal launch power, simultaneously with the constellation shape. An experimental demonstration validates the findings. Improved performances are reported, up to 0.13 bit/4D in simulation and experimentally up to 0.12 bit/4D.
We propose an autoencoder-based geometric shaping that learns a constellation robust to SNR and laser linewidth estimation errors. This constellation maintains shaping gain in mutual information (up to 0.3 bits/symbol) with respect to QAM over various SNR and laser linewidth values.
Over-the-air federated edge learning (Air-FEEL) is a communication-efficient solution for privacy-preserving distributed learning over wireless networks. Air-FEEL allows one-shot over-the-air aggregation of gradient/model-updates by exploiting the waveform superposition property of wireless channels, and thus promises an extremely low aggregation latency that is independent of the network size. However, such communication efficiency may come at a cost of learning performance degradation due to the aggregation error caused by the non-uniform channel fading over devices and noise perturbation. Prior work adopted channel inversion power control (or its variants) to reduce the aggregation error by aligning the channel gains, which, however, could be highly suboptimal in deep fading scenarios due to the noise amplification. To overcome this issue, we investigate the power control optimization for enhancing the learning performance of Air-FEEL. Towards this end, we first analyze the convergence behavior of the Air-FEEL by deriving the optimality gap of the loss-function under any given power control policy. Then we optimize the power control to minimize the optimality gap for accelerating convergence, subject to a set of average and maximum power constraints at edge devices. The problem is generally non-convex and challenging to solve due to the coupling of power control variables over different devices and iterations. To tackle this challenge, we develop an efficient algorithm by jointly exploiting the successive convex approximation (SCA) and trust region methods. Numerical results show that the optimized power control policy achieves significantly faster convergence than the benchmark policies such as channel inversion and uniform power transmission.
This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggregation at each round), we consider a new power control design aiming at directly maximizing the convergence speed. Towards this end, we first analyze the convergence behavior of Air-FEEL (in terms of the optimality gap) subject to aggregation errors at different communication rounds. It is revealed that if the aggregation estimates are unbiased, then the training algorithm would converge exactly to the optimal point with mild conditions; while if they are biased, then the algorithm would converge with an error floor determined by the accumulated estimate bias over communication rounds. Next, building upon the convergence results, we optimize the power control to directly minimize the derived optimality gaps under both biased and unbiased aggregations, subject to a set of average and maximum power constraints at individual edge devices. We transform both problems into convex forms, and obtain their structured optimal solutions, both appearing in a form of regularized channel inversion, by using the Lagrangian duality method. Finally, numerical results show that the proposed power control policies achieve significantly faster convergence for Air-FEEL, as compared with benchmark policies with fixed power transmission or conventional MSE minimization.
Leveraging powerful deep learning techniques, the end-to-end (E2E) learning of communication system is able to outperform the classical communication system. Unfortunately, this communication system cannot be trained by deep learning without known channel. To deal with this problem, a generative adversarial network (GAN) based training scheme has been recently proposed to imitate the real channel. However, the gradient vanishing and overfitting problems of GAN will result in the serious performance degradation of E2E learning of communication system. To mitigate these two problems, we propose a residual aided GAN (RA-GAN) based training scheme in this paper. Particularly, inspired by the idea of residual learning, we propose a residual generator to mitigate the gradient vanishing problem by realizing a more robust gradient backpropagation. Moreover, to cope with the overfitting problem, we reconstruct the loss function for training by adding a regularizer, which limits the representation ability of RA-GAN. Simulation results show that the trained residual generator has better generation performance than the conventional generator, and the proposed RA-GAN based training scheme can achieve the near-optimal block error rate (BLER) performance with a negligible computational complexity increase in both the theoretical channel model and the ray-tracing based channel dataset.