Do you want to publish a course? Click here

Asteroseismic analysis of variable hot subdwarf stars observed with TESS I. The mean g-mode period spacings in hot subdwarf B stars

75   0   0.0 ( 0 )
 Added by Murat Uzundag
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present photometric and spectroscopic analyses of gravity (g-mode) long-period pulsating hot subdwarf B (sdB) stars. We perform a detailed asteroseismic and spectroscopic analysis of five pulsating sdB stars observed with {it TESS} aiming at the global comparison of the observations with the model predictions based on our stellar evolution computations coupled with the adiabatic pulsation computations. We apply standard seismic tools for mode identification, including asymptotic period spacings and rotational frequency multiplets. We calculate the mean period spacing for $l = 1$ and $l = 2$ modes and estimate the errors by means of a statistical resampling analysis. For all stars, atmospheric parameters were derived by fitting synthetic spectra to the newly obtained low-resolution spectra. We have computed stellar evolution models using {tt LPCODE} stellar evolution code, and computed $l = 1$ g-mode frequencies with the adiabatic non-radial pulsation code {tt LP-PUL}. Derived observational mean period spacings are then compared to the mean period spacings from detailed stellar evolution computations coupled with the adiabatic pulsation computations of g-modes. The atmospheric parameters derived from spectroscopic data are typical of long-period pulsating sdB stars with the effective temperature ranging from 23,700,K to 27,600,K and surface gravity spanning from 5.3,dex to 5.5,dex. In agreement with the expectations from theoretical arguments and previous asteroseismological works, we find that the mean period spacings obtained for models with small convective cores, as predicted by a pure Schwarzschild criterion, are incompatible with the observations. We find that models with a standard/modest convective boundary mixing at the boundary of the convective core are in better agreement with the observed mean period spacings and are therefore more realistic.



rate research

Read More

119 - M.D. Reed , A. Baran , A.C. Quint 2011
We investigate the possibility of nearly-equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal period spacings of modes with differing degrees and relationships between periods of the same radial order but differing degrees. Period transforms, Kolmogorov-Smirnov tests, and linear least-squares fits have been used to detect and determine the significance of equal period spacings. We have also used Monte Carlo simulations to estimate the likelihood that the detected spacings could be produced randomly. Period transforms for nine of the Kepler stars indicate ell=1 period spacings, with five also showing peaks for ell=2 modes. 12 stars indicate ell=1 modes using the Kolmogorov-Smirnov test while another shows solely ell=2 modes. Monte Carlo results indicate that equal period spacings are significant in 10 stars above 99% confidence and 13 of the 14 are above 94% confidence. For 12 stars, the various methods find consistent regular period spacing values to within the errors, two others show some inconsistencies, likely caused by binarity, and the last has significant detections but the mode assignment disagrees between methods. We find a common ell=1 period spacing spanning a range from 231 to 272 s allowing us to correlate pulsation modes with 222 periodicities and that the ell=2 period spacings are related to the ell=1 spacings by the asymptotic relationship $1/sqrt{3}$. We briefly discuss the impact of equal period spacings which indicate low-degree modes with a lack of significant mode trappings.
Combing Gaia DR2 with LAMOST DR5, we spectroscopically identified 924 hot subdwarf stars, among which 32 stars exhibit strong double-lined composite spectra. We measured the effective temperature $T_{rm eff}$, surface gravity $log,g$, helium abundance $y=n{rm He}/n{rm H}$, and radial velocities of 892 non-composite spectra hot subdwarf stars by fitting LAMOST observations with Tlusty/Synspec non-LTE synthetic spectra. We outlined four different groups in the $T_{rm eff}-log,g$ diagram with our helium abundance classification scheme and two nearly parallel sequences in the $T_{rm eff}-log(y)$ diagram. 3D Galactic space motions and orbits of 747 hot subdwarf stars with $(G_{BP}-G_{RP})_{0}<-0.36$ mag were computed using LAMOST radial velocities and Gaia parallaxes and proper motions. Based on the $U-V$ velocity diagram, $J_{z}-$eccentricity diagram, and Galactic orbits, we derived Galactic population classifications and the fractional distributions of the four hot subdwarf helium groups in the halo, thin disk and thick disk. Comparisons with the predictions of binary population synthesis calculations (Han 2008) suggest that He-rich hot subdwarf stars with $log(y)ge0$ are from the double helium white dwarfs merger, He-deficient hot subdwarf stars with $-2.2lelog(y)<-1$ from the common envelope ejection, and He-deficient hot subdwarf stars with $log(y)<-2.2$ from the stable Roche lobe overflow channels. The relative number of He-rich hot subdwarf stars with $-1lelog(y)<0$ and $log(y)ge0$ in the halo is more than twice the prediction of Zhang et al.(2017), even more than six times in the thin disk, which implies that the mergers of helium white dwarfs with low mass main sequence stars may not be the main formation channel of He-rich hot subdwarf stars with $-1lelog(y)<0$, specially in younger environments.
Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of wavelength calibration. Field detections in other surveys are found to be uncertain or doubtful, and certainly in need of confirmation. There is presently no strong evidence for the occurrence of a magnetic field in any sdB or sdO star, with typical longitudinal field uncertainties of the order of 2-400 G. It appears that globally simple fields of more than about 1 or 2 kG in strength occur in at most a few percent of hot subdwarfs, and may be completely absent at this strength. Further high-precision surveys, both with high-resolution spectropolarimeters and with instruments similar to FORS1 on large telescopes, would be very valuable.
We present the discovery and asteroseismic analysis of a new g-mode hot B subdwarf (sdB) pulsator, EC 21494-7018 (TIC 278659026), monitored in TESS first sector using 120-second cadence. The light curve analysis reveals that EC 21494-7018 is a sdB pulsator counting up to 20 frequencies associated with independent g-modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 +/- 0.009 Msun) is significantly lower than the typical mass of sdB stars, and suggests that its progenitor has not undergone the He-core flash, and therefore could originate from a massive (>2 Msun) red giant, an alternative channel for the formation of hot B subdwarfs. Other derived parameters include the H-rich envelope mass (0.0037 +/- 0.0010 Msun), radius (0.1694 +/- 0.0081 Rsun), and luminosity (8.2+/-1.1 Lsun). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494-7018 has burnt ~43% (in mass) of its central helium and possesses a relatively large mixed core (Mcore = 0.198 +/- 0.010 Msun), in line with trends already uncovered from other g-mode sdB pulsators analysed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X(O)core = 0.16 -0.05 +0.13) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain C12(alpha,gamma)O16 nuclear reaction rate.
88 - S. Vennes , P. Nemeth , A. Kawka 2017
We have completed a survey of twenty-two ultraviolet-selected hot subdwarfs using the Fiber-fed Extended Range Optical Spectrograph (FEROS) and the 2.2-m telescope at La Silla. The sample includes apparently single objects as well as hot subdwarfs paired with a bright, unresolved companion. The sample was extracted from our GALEX catalogue of hot subdwarf stars. We identified three new short-period systems (P=3.5 hours to 5 days) and determined the orbital parameters of a long-period (P=62.66 d) sdO plus G III system. This particular system should evolve into a close double degenerate system following a second common envelope phase. We also conducted a chemical abundance study of the subdwarfs: Some objects show nitrogen and argon abundance excess with respect to oxygen. We present key results of this programme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا