No Arabic abstract
Detection of magnetic fields has been reported in several sdO and sdB stars. Recent literature has cast doubts on the reliability of most of these detections. We revisit data previously published in the literature, and we present new observations to clarify the question of how common magnetic fields are in subdwarf stars. We consider a sample of about 40 hot subdwarf stars. About 30 of them have been observed with the FORS1 and FORS2 instruments of the ESO VLT. Here we present new FORS1 field measurements for 17 stars, 14 of which have never been observed for magnetic fields before. We also critically review the measurements already published in the literature, and in particular we try to explain why previous papers based on the same FORS1 data have reported contradictory results. All new and re-reduced measurements obtained with FORS1 are shown to be consistent with non-detection of magnetic fields. We explain previous spurious field detections from data obtained with FORS1 as due to a non-optimal method of wavelength calibration. Field detections in other surveys are found to be uncertain or doubtful, and certainly in need of confirmation. There is presently no strong evidence for the occurrence of a magnetic field in any sdB or sdO star, with typical longitudinal field uncertainties of the order of 2-400 G. It appears that globally simple fields of more than about 1 or 2 kG in strength occur in at most a few percent of hot subdwarfs, and may be completely absent at this strength. Further high-precision surveys, both with high-resolution spectropolarimeters and with instruments similar to FORS1 on large telescopes, would be very valuable.
We have completed a survey of twenty-two ultraviolet-selected hot subdwarfs using the Fiber-fed Extended Range Optical Spectrograph (FEROS) and the 2.2-m telescope at La Silla. The sample includes apparently single objects as well as hot subdwarfs paired with a bright, unresolved companion. The sample was extracted from our GALEX catalogue of hot subdwarf stars. We identified three new short-period systems (P=3.5 hours to 5 days) and determined the orbital parameters of a long-period (P=62.66 d) sdO plus G III system. This particular system should evolve into a close double degenerate system following a second common envelope phase. We also conducted a chemical abundance study of the subdwarfs: Some objects show nitrogen and argon abundance excess with respect to oxygen. We present key results of this programme.
We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that besides stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km/s-level. Eclipsing systems of HW Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.
We present photometric and spectroscopic analyses of gravity (g-mode) long-period pulsating hot subdwarf B (sdB) stars. We perform a detailed asteroseismic and spectroscopic analysis of five pulsating sdB stars observed with {it TESS} aiming at the global comparison of the observations with the model predictions based on our stellar evolution computations coupled with the adiabatic pulsation computations. We apply standard seismic tools for mode identification, including asymptotic period spacings and rotational frequency multiplets. We calculate the mean period spacing for $l = 1$ and $l = 2$ modes and estimate the errors by means of a statistical resampling analysis. For all stars, atmospheric parameters were derived by fitting synthetic spectra to the newly obtained low-resolution spectra. We have computed stellar evolution models using {tt LPCODE} stellar evolution code, and computed $l = 1$ g-mode frequencies with the adiabatic non-radial pulsation code {tt LP-PUL}. Derived observational mean period spacings are then compared to the mean period spacings from detailed stellar evolution computations coupled with the adiabatic pulsation computations of g-modes. The atmospheric parameters derived from spectroscopic data are typical of long-period pulsating sdB stars with the effective temperature ranging from 23,700,K to 27,600,K and surface gravity spanning from 5.3,dex to 5.5,dex. In agreement with the expectations from theoretical arguments and previous asteroseismological works, we find that the mean period spacings obtained for models with small convective cores, as predicted by a pure Schwarzschild criterion, are incompatible with the observations. We find that models with a standard/modest convective boundary mixing at the boundary of the convective core are in better agreement with the observed mean period spacings and are therefore more realistic.
We present new results of a survey for weak magnetic fields among DA white dwarfs with inclusion of some brighter hot subdwarf stars. We have detected variable circular polarization in the Halpha line of the hot subdwarf star Feige 34 (SP: sdO). From these data, we estimate that the longitudinal magnetic field of this star varies from -1.1 +/- 3.2 kG to +9.6 +/- 2.6 kG, with a mean of about +5 kG and a period longer than 2 h. In this study, we also confirm the magnetic nature of white dwarf WD1105-048 and present upper limits of kilogauss longitudinal magnetic fields of 5 brightest DA white dwarfs. Our data support recent finding that 25% of white dwarfs have kilogauss magnetic fields. This frequency also confirms results of early estimates obtained using the magnetic field function of white dwarfs.
In this work, we present the first results of an ongoing survey to search for planetary nebulae (PNe) around hot subdwarf stars (sdOs). Deep images and intermediate-resolution long-slit spectra of RWT 152, the only confirmed PN+sdO system in the northern hemisphere, as well as preliminary results for other sdO+PN candidate are presented.