Do you want to publish a course? Click here

Refined Deep Neural Network and U-Net for Polyps Segmentation

245   0   0.0 ( 0 )
 Added by Huy Trinh Quoc
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Medico: Multimedia Task 2020 focuses on developing an efficient and accurate computer-aided diagnosis system for automatic segmentation [3]. We participate in task 1, Polyps segmentation task, which is to develop algorithms for segmenting polyps on a comprehensive dataset. In this task, we propose methods combining Residual module, Inception module, Adaptive Convolutional neural network with U-Net model, and PraNet for semantic segmentation of various types of polyps in endoscopic images. We select 5 runs with different architecture and parameters in our methods. Our methods show potential results in accuracy and efficiency through multiple experiments, and our team is in the Top 3 best results with a Jaccard index of 0.765.



rate research

Read More

Sturge-Weber syndrome (SWS) is a vascular malformation disease, and it may cause blindness if the patients condition is severe. Clinical results show that SWS can be divided into two types based on the characteristics of scleral blood vessels. Therefore, how to accurately segment scleral blood vessels has become a significant problem in computer-aided diagnosis. In this research, we propose to continuously upsample the bottom layers feature maps to preserve image details, and design a novel Claw UNet based on UNet for scleral blood vessel segmentation. Specifically, the residual structure is used to increase the number of network layers in the feature extraction stage to learn deeper features. In the decoding stage, by fusing the features of the encoding, upsampling, and decoding parts, Claw UNet can achieve effective segmentation in the fine-grained regions of scleral blood vessels. To effectively extract small blood vessels, we use the attention mechanism to calculate the attention coefficient of each position in images. Claw UNet outperforms other UNet-based networks on scleral blood vessel image dataset.
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve the performance of U-Net on various segmentation tasks, we propose a novel architecture called DoubleU-Net, which is a combination of two U-Net architectures stacked on top of each other. The first U-Net uses a pre-trained VGG-19 as the encoder, which has already learned features from ImageNet and can be transferred to another task easily. To capture more semantic information efficiently, we added another U-Net at the bottom. We also adopt Atrous Spatial Pyramid Pooling (ASPP) to capture contextual information within the network. We have evaluated DoubleU-Net using four medical segmentation datasets, covering various imaging modalities such as colonoscopy, dermoscopy, and microscopy. Experiments on the MICCAI 2015 segmentation challenge, the CVC-ClinicDB, the 2018 Data Science Bowl challenge, and the Lesion boundary segmentation datasets demonstrate that the DoubleU-Net outperforms U-Net and the baseline models. Moreover, DoubleU-Net produces more accurate segmentation masks, especially in the case of the CVC-ClinicDB and MICCAI 2015 segmentation challenge datasets, which have challenging images such as smaller and flat polyps. These results show the improvement over the existing U-Net model. The encouraging results, produced on various medical image segmentation datasets, show that DoubleU-Net can be used as a strong baseline for both medical image segmentation and cross-dataset evaluation testing to measure the generalizability of Deep Learning (DL) models.
Development of deep learning systems for biomedical segmentation often requires access to expert-driven, manually annotated datasets. If more than a single expert is involved in the annotation of the same images, then the inter-expert agreement is not necessarily perfect, and no single expert annotation can precisely capture the so-called ground truth of the regions of interest on all images. Also, it is not trivial to generate a reference estimate using annotations from multiple experts. Here we present a deep neural network, defined as U-Net-and-a-half, which can simultaneously learn from annotations performed by multiple experts on the same set of images. U-Net-and-a-half contains a convolutional encoder to generate features from the input images, multiple decoders that allow simultaneous learning from image masks obtained from annotations that were independently generated by multiple experts, and a shared low-dimensional feature space. To demonstrate the applicability of our framework, we used two distinct datasets from digital pathology and radiology, respectively. Specifically, we trained two separate models using pathologist-driven annotations of glomeruli on whole slide images of human kidney biopsies (10 patients), and radiologist-driven annotations of lumen cross-sections of human arteriovenous fistulae obtained from intravascular ultrasound images (10 patients), respectively. The models based on U-Net-and-a-half exceeded the performance of the traditional U-Net models trained on single expert annotations alone, thus expanding the scope of multitask learning in the context of biomedical image segmentation.
Segmentation of multiple anatomical structures is of great importance in medical image analysis. In this study, we proposed a $mathcal{W}$-net to simultaneously segment both the optic disc (OD) and the exudates in retinal images based on the multi-task learning (MTL) scheme. We introduced a class-balanced loss and a multi-task weighted loss to alleviate the imbalanced problem and to improve the robustness and generalization property of the $mathcal{W}$-net. We demonstrated the effectiveness of our approach by applying five-fold cross-validation experiments on two public datasets e_ophtha_EX and DiaRetDb1. We achieved F1-score of 94.76% and 95.73% for OD segmentation, and 92.80% and 94.14% for exudates segmentation. To further prove the generalization property of the proposed method, we applied the trained model on the DRIONS-DB dataset for OD segmentation and on the MESSIDOR dataset for exudate segmentation. Our results demonstrated that by choosing the optimal weights of each task, the MTL based $mathcal{W}$-net outperformed separate models trained individually on each task. Code and pre-trained models will be available at: url{https://github.com/FundusResearch/MTL_for_OD_and_exudates.git}.
Fine-tuning a network which has been trained on a large dataset is an alternative to full training in order to overcome the problem of scarce and expensive data in medical applications. While the shallow layers of the network are usually kept unchanged, deeper layers are modified according to the new dataset. This approach may not work for ultrasound images due to their drastically different appearance. In this study, we investigated the effect of fine-tuning different layers of a U-Net which was trained on segmentation of natural images in breast ultrasound image segmentation. Tuning the contracting part and fixing the expanding part resulted in substantially better results compared to fixing the contracting part and tuning the expanding part. Furthermore, we showed that starting to fine-tune the U-Net from the shallow layers and gradually including more layers will lead to a better performance compared to fine-tuning the network from the deep layers moving back to shallow layers. We did not observe the same results on segmentation of X-ray images, which have different salient features compared to ultrasound, it may therefore be more appropriate to fine-tune the shallow layers rather than deep layers. Shallow layers learn lower level features (including speckle pattern, and probably the noise and artifact properties) which are critical in automatic segmentation in this modality.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا