Do you want to publish a course? Click here

GlocalNet: Class-aware Long-term Human Motion Synthesis

156   0   0.0 ( 0 )
 Added by Yudhik Agrawal
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Synthesis of long-term human motion skeleton sequences is essential to aid human-centric video generation with potential applications in Augmented Reality, 3D character animations, pedestrian trajectory prediction, etc. Long-term human motion synthesis is a challenging task due to multiple factors like, long-term temporal dependencies among poses, cyclic repetition across poses, bi-directional and multi-scale dependencies among poses, variable speed of actions, and a large as well as partially overlapping space of temporal pose variations across multiple class/types of human activities. This paper aims to address these challenges to synthesize a long-term (> 6000 ms) human motion trajectory across a large variety of human activity classes (>50). We propose a two-stage activity generation method to achieve this goal, where the first stage deals with learning the long-term global pose dependencies in activity sequences by learning to synthesize a sparse motion trajectory while the second stage addresses the generation of dense motion trajectories taking the output of the first stage. We demonstrate the superiority of the proposed method over SOTA methods using various quantitative evaluation metrics on publicly available datasets.

rate research

Read More

105 - Jingbo Wang , Sijie Yan , Bo Dai 2021
We revisit human motion synthesis, a task useful in various real world applications, in this paper. Whereas a number of methods have been developed previously for this task, they are often limited in two aspects: focusing on the poses while leaving the location movement behind, and ignoring the impact of the environment on the human motion. In this paper, we propose a new framework, with the interaction between the scene and the human motion taken into account. Considering the uncertainty of human motion, we formulate this task as a generative task, whose objective is to generate plausible human motion conditioned on both the scene and the human initial position. This framework factorizes the distribution of human motions into a distribution of movement trajectories conditioned on scenes and that of body pose dynamics conditioned on both scenes and trajectories. We further derive a GAN based learning approach, with discriminators to enforce the compatibility between the human motion and the contextual scene as well as the 3D to 2D projection constraints. We assess the effectiveness of the proposed method on two challenging datasets, which cover both synthetic and real world environments.
Human movement is goal-directed and influenced by the spatial layout of the objects in the scene. To plan future human motion, it is crucial to perceive the environment -- imagine how hard it is to navigate a new room with lights off. Existing works on predicting human motion do not pay attention to the scene context and thus struggle in long-term prediction. In this work, we propose a novel three-stage framework that exploits scene context to tackle this task. Given a single scene image and 2D pose histories, our method first samples multiple human motion goals, then plans 3D human paths towards each goal, and finally predicts 3D human pose sequences following each path. For stable training and rigorous evaluation, we contribute a diverse synthetic dataset with clean annotations. In both synthetic and real datasets, our method shows consistent quantitative and qualitative improvements over existing methods.
159 - Yongyi Tang , Lin Ma , Wei Liu 2018
Human motion prediction aims at generating future frames of human motion based on an observed sequence of skeletons. Recent methods employ the latest hidden states of a recurrent neural network (RNN) to encode the historical skeletons, which can only address short-term prediction. In this work, we propose a motion context modeling by summarizing the historical human motion with respect to the current prediction. A modified highway unit (MHU) is proposed for efficiently eliminating motionless joints and estimating next pose given the motion context. Furthermore, we enhance the motion dynamic by minimizing the gram matrix loss for long-term motion prediction. Experimental results show that the proposed model can promisingly forecast the human future movements, which yields superior performances over related state-of-the-art approaches. Moreover, specifying the motion context with the activity labels enables our model to perform human motion transfer.
This paper proposes a human-aware deblurring model that disentangles the motion blur between foreground (FG) humans and background (BG). The proposed model is based on a triple-branch encoder-decoder architecture. The first two branches are learned for sharpening FG humans and BG details, respectively; while the third one produces global, harmonious results by comprehensively fusing multi-scale deblurring information from the two domains. The proposed model is further endowed with a supervised, human-aware attention mechanism in an end-to-end fashion. It learns a soft mask that encodes FG human information and explicitly drives the FG/BG decoder-branches to focus on their specific domains. To further benefit the research towards Human-aware Image Deblurring, we introduce a large-scale dataset, named HIDE, which consists of 8,422 blurry and sharp image pairs with 65,784 densely annotated FG human bounding boxes. HIDE is specifically built to span a broad range of scenes, human object sizes, motion patterns, and background complexities. Extensive experiments on public benchmarks and our dataset demonstrate that our model performs favorably against the state-of-the-art motion deblurring methods, especially in capturing semantic details.
Synthesizing 3D human motion plays an important role in many graphics applications as well as understanding human activity. While many efforts have been made on generating realistic and natural human motion, most approaches neglect the importance of modeling human-scene interactions and affordance. On the other hand, affordance reasoning (e.g., standing on the floor or sitting on the chair) has mainly been studied with static human pose and gestures, and it has rarely been addressed with human motion. In this paper, we propose to bridge human motion synthesis and scene affordance reasoning. We present a hierarchical generative framework to synthesize long-term 3D human motion conditioning on the 3D scene structure. Building on this framework, we further enforce multiple geometry constraints between the human mesh and scene point clouds via optimization to improve realistic synthesis. Our experiments show significant improvements over previous approaches on generating natural and physically plausible human motion in a scene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا