Do you want to publish a course? Click here

A Joint Power Splitting, Active and Passive Beamforming Optimization Framework for IRS Assisted MIMO SWIPT System

193   0   0.0 ( 0 )
 Added by Xie Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper considers an intelligent reflecting surface (IRS) assisted multi-input multi-output (MIMO) power splitting (PS) based simultaneous wireless information and power transfer (SWIPT) system with multiple PS receivers (PSRs). The objective is to maximize the achievable data rate of the system by jointly optimizing the PS ratios at the PSRs, the active transmit beamforming (ATB) at the access point (AP), and the passive reflective beamforming (PRB) at the IRS, while the constraints on maximum transmission power at the AP, the reflective phase shift of each element at the IRS, the individual minimum harvested energy requirement of each PSR, and the domain of PS ratio of each PSR are all satisfied. For this unsolved problem, however, since the optimization variables are intricately coupled and the constraints are conflicting, the formulated problem is non-convex, and cannot be addressed by employing exist approaches directly. To this end, we propose a joint optimization framework to solve this problem. Particularly, we reformulate it as an equivalent form by employing the Lagrangian dual transform and the fractional programming transform, and decompose the transformed problem into several sub-problems. Then, we propose an alternate optimization algorithm by capitalizing on the dual sub-gradient method, the successive convex approximation method, and the penalty-based majorization-minimization approach, to solve the sub-problems iteratively, and obtain the optimal solutions in nearly closed-forms. Numerical simulation results verify the effectiveness of the IRS in SWIPT system and indicate that the proposed algorithm offers a substantial performance gain.



rate research

Read More

208 - Fangzhou Wang , Hongbin Li , 2021
Intelligent reflecting surface (IRS) is a promising technology being considered for future wireless communications due to its ability to control signal propagation. This paper considers the joint active and passive beamforming problem for an IRS-assisted radar, where multiple IRSs are deployed to assist the surveillance of multiple targets in cluttered environments. Specifically, we aim to maximize the minimum target illumination power at multiple target locations by jointly optimizing the active beamformer at the radar transmitter and the passive phase-shift matrices at the IRSs, subject to an upperbound on the clutter power at each clutter scatterer. The resulting optimization problem is nonconvex and solved with a sequential optimization procedure along with semedefinite relaxation (SDR). Simulation results show that IRSs can help create effective line-of-sight (LOS) paths and thus substantially improve the radar robustness against target blockage.
132 - Meng Hua , Qingqing Wu 2021
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink (DL) and meanwhile receives information signals in the uplink (UL) with the help of IRS. Particularly, we propose three types of IRS beamforming configurations to strike a balance between the system performance and signaling overhead as well as implementation complexity. We first propose the fully dynamic IRS beamforming, where the IRS phase-shift vectors vary with each time slot for both DL wireless energy transfer (WET) and UL wireless information transmission (WIT). To further reduce signaling overhead and implementation complexity, we then study two special cases, namely, partially dynamic IRS beamforming and static IRS beamforming. For the former case, two different phase-shift vectors can be exploited for the DL WET and the UL WIT, respectively, whereas for the latter case, the same phase-shift vector needs to be applied for both DL and UL transmissions. We aim to maximize the system throughput by jointly optimizing the time allocation, HAP transmit power, and IRS phase shifts for the above three cases. Two efficient algorithms based on alternating optimization and penalty-based algorithms are respectively proposed for both perfect self-interference cancellation (SIC) case and imperfect SIC case by applying successive convex approximation and difference-of-convex optimization techniques. Simulation results demonstrate the benefits of IRS for enhancing the performance of FD-WPCN, and also show that the IRS-aided FD-WPCN is able to achieve significantly performance gain compared to its counterpart with half-duplex when the self-interference (SI) is properly suppressed.
Intelligent reflecting surface (IRS) has emerged as an appealing solution to enhance the wireless communication performance by reconfiguring the wireless propagation environment. In this paper, we propose to apply IRS to the physical-layer service integration (PHY-SI) system, where a single-antenna access point (AP) integrates two sorts of service messages, i.e., multicast message and confidential message, via superposition coding to serve multiple single-antenna users. Our goal is to optimize the power allocation (for transmitting different messages) at the AP and the passive beamforming at the IRS to maximize the achievable secrecy rate region. To this end, we formulate this problem as a bi-objective optimization problem, which is shown equivalent to a secrecy rate maximization problem subject to the constraints on the quality of multicast service. Due to the non-convexity of this problem, we propose two customized algorithms to obtain its high-quality suboptimal solutions, thereby approximately characterizing the secrecy rate region. The resulting performance gap with the globally optimal solution is analyzed. Furthermore, we provide theoretical analysis to unveil the impact of IRS beamforming on the performance of PHY-SI. Numerical results demonstrate the advantages of leveraging IRS in improving the performance of PHY-SI and also validate our theoretical analysis.
This paper investigates a joint beamforming design in a multiuser multiple-input single-output (MISO) communication network aided with an intelligent reflecting surface (IRS) panel. The symbol-level precoding (SLP) is adopted to enhance the system performance by exploiting the multiuser interference (MUI) with consideration of bounded channel uncertainty. The joint beamforming design is formulated into a nonconvex worst-case robust programming to minimize the transmit power subject to single-to-noise ratio (SNR) requirements. To address the challenges due to the constant modulus and the coupling of the beamformers, we first study the single-user case. Specifically, we propose and compare two algorithms based on the semidefinite relaxation (SDR) and alternating optimization (AO) methods, respectively. It turns out that the AO-based algorithm has much lower computational complexity but with almost the same power to the SDR-based algorithm. Then, we apply the AO technique to the multiuser case and thereby develop an algorithm based on the proximal gradient descent (PGD) method. The algorithm can be generalized to the case of finite-resolution IRS and the scenario with direct links from the transmitter to the users. Numerical results show that the SLP can significantly improve the system performance. Meanwhile, 3-bit phase shifters can achieve near-optimal power performance.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا