No Arabic abstract
Intelligent reflecting surface (IRS) is a promising technology being considered for future wireless communications due to its ability to control signal propagation. This paper considers the joint active and passive beamforming problem for an IRS-assisted radar, where multiple IRSs are deployed to assist the surveillance of multiple targets in cluttered environments. Specifically, we aim to maximize the minimum target illumination power at multiple target locations by jointly optimizing the active beamformer at the radar transmitter and the passive phase-shift matrices at the IRSs, subject to an upperbound on the clutter power at each clutter scatterer. The resulting optimization problem is nonconvex and solved with a sequential optimization procedure along with semedefinite relaxation (SDR). Simulation results show that IRSs can help create effective line-of-sight (LOS) paths and thus substantially improve the radar robustness against target blockage.
Intelligent reflecting surface (IRS) has emerged as a competitive solution to address blockage issues in millimeter wave (mmWave) and Terahertz (THz) communications due to its capability of reshaping wireless transmission environments. Nevertheless, obtaining the channel state information of IRS-assisted systems is quite challenging because of the passive characteristics of the IRS. In this paper, we consider the problem of beam training/alignment for IRS-assisted downlink mmWave/THz systems, where a multi-antenna base station (BS) with a hybrid structure serves a single-antenna user aided by IRS. By exploiting the inherent sparse structure of the BS-IRS-user cascade channel, the beam training problem is formulated as a joint sparse sensing and phaseless estimation problem, which involves devising a sparse sensing matrix and developing an efficient estimation algorithm to identify the best beam alignment from compressive phaseless measurements. Theoretical analysis reveals that the proposed method can identify the best alignment with only a modest amount of training overhead. Simulation results show that, for both line-of-sight (LOS) and NLOS scenarios, the proposed method obtains a significant performance improvement over existing state-of-art methods. Notably, it can achieve performance close to that of the exhaustive beam search scheme, while reducing the training overhead by 95%.
This paper considers an intelligent reflecting surface (IRS) assisted multi-input multi-output (MIMO) power splitting (PS) based simultaneous wireless information and power transfer (SWIPT) system with multiple PS receivers (PSRs). The objective is to maximize the achievable data rate of the system by jointly optimizing the PS ratios at the PSRs, the active transmit beamforming (ATB) at the access point (AP), and the passive reflective beamforming (PRB) at the IRS, while the constraints on maximum transmission power at the AP, the reflective phase shift of each element at the IRS, the individual minimum harvested energy requirement of each PSR, and the domain of PS ratio of each PSR are all satisfied. For this unsolved problem, however, since the optimization variables are intricately coupled and the constraints are conflicting, the formulated problem is non-convex, and cannot be addressed by employing exist approaches directly. To this end, we propose a joint optimization framework to solve this problem. Particularly, we reformulate it as an equivalent form by employing the Lagrangian dual transform and the fractional programming transform, and decompose the transformed problem into several sub-problems. Then, we propose an alternate optimization algorithm by capitalizing on the dual sub-gradient method, the successive convex approximation method, and the penalty-based majorization-minimization approach, to solve the sub-problems iteratively, and obtain the optimal solutions in nearly closed-forms. Numerical simulation results verify the effectiveness of the IRS in SWIPT system and indicate that the proposed algorithm offers a substantial performance gain.
Intelligent reflecting surface (IRS) has emerged as an appealing solution to enhance the wireless communication performance by reconfiguring the wireless propagation environment. In this paper, we propose to apply IRS to the physical-layer service integration (PHY-SI) system, where a single-antenna access point (AP) integrates two sorts of service messages, i.e., multicast message and confidential message, via superposition coding to serve multiple single-antenna users. Our goal is to optimize the power allocation (for transmitting different messages) at the AP and the passive beamforming at the IRS to maximize the achievable secrecy rate region. To this end, we formulate this problem as a bi-objective optimization problem, which is shown equivalent to a secrecy rate maximization problem subject to the constraints on the quality of multicast service. Due to the non-convexity of this problem, we propose two customized algorithms to obtain its high-quality suboptimal solutions, thereby approximately characterizing the secrecy rate region. The resulting performance gap with the globally optimal solution is analyzed. Furthermore, we provide theoretical analysis to unveil the impact of IRS beamforming on the performance of PHY-SI. Numerical results demonstrate the advantages of leveraging IRS in improving the performance of PHY-SI and also validate our theoretical analysis.
Future wireless communication systems are expected to explore spectral bands typically used by radar systems, in order to overcome spectrum congestion of traditional communication bands. Since in many applications radar and communication share the same platform, spectrum sharing can be facilitated by joint design as dual function radar-communications system. In this paper, we propose a joint transmit beamforming model for a dual-function multiple-input-multiple-output (MIMO) radar and multiuser MIMO communication transmitter sharing the spectrum and an antenna array. The proposed dual-function system transmits the weighted sum of independent radar waveform and communication symbols, forming multiple beams towards the radar targets and the communication receivers, respectively. The design of the weighting coefficients is formulated as an optimization problem whose objective is the performance of the MIMO radar transmit beamforming, while guaranteeing that the signal-to-interference-plus-noise ratio (SINR) at each communication user is higher than a given threshold. Despite the non-convexity of the proposed optimization problem, it can be relaxed into a convex one, which can be solved in polynomial time, and we prove that the relaxation is tight. Then, we propose a reduced complexity design based on zero-forcing the inter-user interference and radar interference. Unlike previous works, which focused on the transmission of communication symbols to synthesize a radar transmit beam pattern, our method provides more degrees of freedom for MIMO radar and is thus able to obtain improved radar performance, as demonstrated in our simulation study. Furthermore, the proposed dual-function scheme approaches the radar performance of the radar-only scheme, i.e., without spectrum sharing, under reasonable communication quality constraints.
Intelligent reflecting surfaces (IRSs) constitute passive devices, which are capable of adjusting the phase shifts of their reflected signals, and hence they are suitable for passive beamforming. In this paper, we conceive their design with the active beamforming action of multiple-input multipleoutput (MIMO) systems used at the access points (APs) for improving the beamforming gain, where both the APs and users are equipped with multiple antennas. Firstly, we decouple the optimization problem and design the active beamforming for a given IRS configuration. Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program (QCQP). For solving the transformed problem, we give an approximate solution based on the technique of widely used semidefinite relaxation (SDR). We also propose a low-complexity iterative solution. We further prove that it can converge to a locally optimal value. Finally, considering the practical scenario of discrete phase shifts at the IRS, we give the quantization design for IRS elements on basis of the two solutions. Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.