We first announce our recent result on adjunction and inversion of adjunction. Then we clarify the relationship between our inversion of adjunction and Hacons inversion of adjunction for log canonical centers of arbitrary codimension.
Given a DG-category A we introduce the bar category of modules Modbar(A). It is a DG-enhancement of the derived category D(A) of A which is isomorphic to the category of DG A-modules with A-infinity morphisms between them. However, it is defined intrinsically in the language of DG-categories and requires no complex machinery or sign conventions of A-infinity categories. We define for these bar categories Tensor and Hom bifunctors, dualisation functors, and a convolution of twisted complexes. The intended application is to working with DG-bimodules as enhancements of exact functors between triangulated categories. As a demonstration we develop homotopy adjunction theory for tensor functors between derived categories of DG-categories. It allows us to show in an enhanced setting that given a functor F with left and right adjoints L and R the functorial complex $FR rightarrow FRFR rightarrow FR rightarrow Id$ lifts to a canonical twisted complex whose convolution is the square of the spherical twist of F. We then write down four induced functorial Postnikov towers computing this convolution.
An adjunction is a pair of functors related by a pair of natural transformations, and relating a pair of categories. It displays how a structure, or a concept, projects from each category to the other, and back. Adjunctions are the common denominator of Galois connections, representation theories, spectra, and generalized quantifiers. We call an adjunction nuclear when its categories determine each other. We show that every adjunction can be resolved into a nuclear adjunction. The resolution is idempotent in a strict sense. The resulting nucleus displays the concept that was implicit in the original adjunction, just as the singular value decomposition of an adjoint pair of linear operators displays their canonical bases. [snip] In his seminal early work, Ross Street described an adjunction between monads and comonads in 2-categories. Lifting the nucleus construction, we show that the resulting Street monad on monads is strictly idempotent, and extracts the nucleus of a monad. A dual treatment achieves the same for comonads. This uncovers remarkably concrete applications behind a notable fragment of pure 2-category theory. The other way around, driven by the tasks and methods of machine learning and data analysis, the nucleus construction also seems to uncover remarkably pure and general mathematical content lurking behind the daily practices of network computation and data analysis.
It is well established that equational algebraic theories, and the monads they generate, can be used to encode computational effects. An important insight of Power and Shkaravska is that comodels of an algebraic theory T -- i.e., models in the opposite category Set^op -- provide a suitable environment for evaluating the computational effects encoded by T. As already noted by Power and Shkaravska, taking comodels yields a functor from accessible monads to accessible comonads on Set. In this paper, we show that this functor is part of an adjunction -- the costructure-cosemantics adjunction of the title -- and undertake a thorough investigation of its properties. We show that, on the one hand, the cosemantics functor takes its image in what we term the presheaf comonads induced by small categories; and that, on the other, costructure takes its image in the presheaf monads induced by small categories. In particular, the cosemantics comonad of an accessible monad will be induced by an explicitly-described category called its behaviour category that encodes the static and dynamic properties of the comodels. Similarly, the costructure monad of an accessible comonad will be induced by a behaviour category encoding static and dynamic properties of the comonad coalgebras. We tie these results together by showing that the costructure-cosemantics adjunction is idempotent, with fixpoints to either side given precisely by the presheaf monads and comonads. Along the way, we illustrate the value of our results with numerous examples drawn from computation and mathematics.
There are well-understood methods, going back to Givental and Hori--Vafa, that to a Fano toric complete intersection X associate a Laurent polynomial f that corresponds to X under mirror symmetry. We describe a technique for inverting this process, constructing the toric complete intersection X directly from its Laurent polynomial mirror f. We use this technique to construct a new four-dimensional Fano manifold.