Do you want to publish a course? Click here

On inversion of adjunction

93   0   0.0 ( 0 )
 Added by Kenta Hashizume
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We first announce our recent result on adjunction and inversion of adjunction. Then we clarify the relationship between our inversion of adjunction and Hacons inversion of adjunction for log canonical centers of arbitrary codimension.



rate research

Read More

We establish adjunction and inversion of adjunction for log canonical centers of arbitrary codimension in full generality.
There are well-understood methods, going back to Givental and Hori--Vafa, that to a Fano toric complete intersection X associate a Laurent polynomial f that corresponds to X under mirror symmetry. We describe a technique for inverting this process, constructing the toric complete intersection X directly from its Laurent polynomial mirror f. We use this technique to construct a new four-dimensional Fano manifold.
We describe a practical and effective method for reconstructing the deformation class of a Fano manifold X from a Laurent polynomial f that corresponds to X under Mirror Symmetry. We explore connections to nef partitions, the smoothing of singular toric varieties, and the construction of embeddings of one (possibly-singular) toric variety in another. In particular, we construct degenerations from Fano manifolds to singular toric varieties; in the toric complete intersection case, these degenerations were constructed previously by Doran--Harder. We use our method to find models of orbifold del Pezzo surfaces as complete intersections and degeneracy loci, and to construct a new four-dimensional Fano manifold.
An adjunction is a pair of functors related by a pair of natural transformations, and relating a pair of categories. It displays how a structure, or a concept, projects from each category to the other, and back. Adjunctions are the common denominator of Galois connections, representation theories, spectra, and generalized quantifiers. We call an adjunction nuclear when its categories determine each other. We show that every adjunction can be resolved into a nuclear adjunction. The resolution is idempotent in a strict sense. The resulting nucleus displays the concept that was implicit in the original adjunction, just as the singular value decomposition of an adjoint pair of linear operators displays their canonical bases. [snip] In his seminal early work, Ross Street described an adjunction between monads and comonads in 2-categories. Lifting the nucleus construction, we show that the resulting Street monad on monads is strictly idempotent, and extracts the nucleus of a monad. A dual treatment achieves the same for comonads. This uncovers remarkably concrete applications behind a notable fragment of pure 2-category theory. The other way around, driven by the tasks and methods of machine learning and data analysis, the nucleus construction also seems to uncover remarkably pure and general mathematical content lurking behind the daily practices of network computation and data analysis.
102 - Shihoko Ishii 2018
In this paper we focus on pairs consisting of the affine $N$-space and multiideals with a positive exponent. We introduce a method lifting to characteristic 0 which is a kind of the inversion of modulo p reduction. By making use of it, we prove that Mustata-Nakamuras conjecture and some uniform bound of divisors computing log canonical thresholds descend from characteristic 0 to certain classes of pairs in positive characteristic. We also pose a problem whose affirmative answer gives the descent of the statements to the whole set of pairs in positive characteristic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا