Do you want to publish a course? Click here

Heavy quark transport coefficients in a viscous QCD medium with collisional and radiative processes

119   0   0.0 ( 0 )
 Added by Adiba Shaikh
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The heavy quark drag and momentum diffusion coefficients in the presence of both the collisional and radiative processes have been studied in a hot viscous QCD medium. The thermal medium effects are incorporated by employing the effective fugacity quasiparticle model based on the lattice QCD equation of state. Viscous effects are embedded into the heavy quark transport through the near-equilibrium distribution functions of the constituent medium particles of the quark-gluon plasma. The viscous corrections to the momentum distributions have been estimated from the effective Boltzmann equation. The effect of shear viscous correction to drag and diffusion is investigated by considering the soft gluon radiation by heavy quarks along with the elastic collisional processes of the heavy quark with the light quarks and gluons within the QGP medium. The momentum and temperature dependence of the heavy quark transport coefficients are seen to be sensitive to the viscous coefficient of the QGP for the collisional and radiative processes. The collisional and radiative energy loss of the heavy quark in the viscous quark-gluon plasma has also been explored.



rate research

Read More

The impact of momentum anisotropy on the heavy quark transport coefficients due to collisional and radiative processes in the QCD medium has been studied within the ambit of kinetic theory. Anisotropic aspects (momentum) are incorporated into the heavy quark dynamics through the non-equilibrium momentum distribution function of quarks, antiquarks, and gluons. These non-equilibrium distribution functions that encode the physics of momentum anisotropy and turbulent chromo-fields have been obtained by solving the ensemble-averaged diffusive Vlasov-Boltzmann equation. The momentum dependence of heavy quark transport coefficients in the medium is seen to be sensitive to the strength of the anisotropy for both collisional and radiative processes. In addition, the collisional and radiative energy loss of the heavy quark in the anisotropic hot QCD medium have been analyzed. The effects of anisotropy on the drag and diffusion coefficients are observed to have a visible impact on the nuclear suppression factor both at the RHIC and LHC.
We study the effect of shear and bulk viscosities on the heavy quark transport coefficient within the matrix model of semi QGP. Dissipative effects are incorporated through the first-order viscous correction in the quark/antiquark and gluon distribution function. It is observed that while the shear viscosity effects reduces the drag of heavy quark the bulk viscosity effects increase the drag and the diffusion coefficients of heavy quark. For finite values of {eta}/s and {xi}/s, Polyakov loop further decreases the drag and the diffusion coefficients as compared to perturbative QCD.
We extend our recently advanced model on collisional energy loss of heavy quarks in a quark gluon plasma (QGP) by including radiative energy loss. We discuss the approach and present first preliminary results. We show that present data on nuclear modification factor of non photonic single electrons hardly permit to distinguish between those 2 energy loss mechanisms.
The effects of longitudinal bulk viscous pressure on the heavy quark dynamics have been estimated in a strongly magnetized quark-gluon plasma within the Fokker-Planck approach. The bulk viscous modification to the momentum distribution of bulk degrees of freedom has been obtained in the presence of a magnetic field while incorporating the realistic equation of state of the hot magnetized QCD medium. As the magnetic field breaks the isotropy of the medium, the analysis is done along the directions longitudinal and transverse to the field. The longitudinal bulk viscous contribution is seen to have sizable effects in the heavy quark momentum diffusion in the magnetized medium. The dependence of higher Landau levels and the equation of state on the viscous correction to the heavy quark transport has been explored in the analysis.
60 - G. Coci 2017
We discuss the propagation of heavy quarks (charm and bottom) through the QGP by means of a relativistic Boltzmann transport approach including both collisional and radiative energy loss mechanisms. In particular we investigate the impact of induced gluon radiation by dynamical QCD medium implementing in our transport model a formula for the emitted gluon spectrum calculated in a higher-twist scheme. We notice that in the region of high transverse momentum ($p_T > 10$ GeV) radiative processes play an essential role giving a dominant contribution to the generation of $R_{AA}$ and $v_2$ at momentum values for which the energy loss by collisions is in the perturbative regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا