Do you want to publish a course? Click here

Competition of Heavy Quark Radiative and Collisional Energy Loss in Deconfined Matter

180   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

We extend our recently advanced model on collisional energy loss of heavy quarks in a quark gluon plasma (QGP) by including radiative energy loss. We discuss the approach and present first preliminary results. We show that present data on nuclear modification factor of non photonic single electrons hardly permit to distinguish between those 2 energy loss mechanisms.



rate research

Read More

We extend our recently advanced model on collisional energy loss of heavy quarks in a quark gluon plasma (QGP) by including radiative energy loss. We discuss the approach and present calculations for PbPb collisions at $sqrt{s}=2.76 TeV$. The transverse momentum spectra, RAA, and the elliptic flow $v_2$ of heavy quarks have been obtained using the model of Kolb and Heinz for the hydrodynamical expansion of the plasma.
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends appreciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
60 - G. Coci 2017
We discuss the propagation of heavy quarks (charm and bottom) through the QGP by means of a relativistic Boltzmann transport approach including both collisional and radiative energy loss mechanisms. In particular we investigate the impact of induced gluon radiation by dynamical QCD medium implementing in our transport model a formula for the emitted gluon spectrum calculated in a higher-twist scheme. We notice that in the region of high transverse momentum ($p_T > 10$ GeV) radiative processes play an essential role giving a dominant contribution to the generation of $R_{AA}$ and $v_2$ at momentum values for which the energy loss by collisions is in the perturbative regime.
We revisit the calculation of multiple parton scattering of a heavy quark in nuclei within the framework of recently improved high-twist factorization formalism, in which gauge invariance is ensured by a delicate setup of the initial partons transverse momenta. We derive a new result for medium modified heavy quark fragmentation functions in deeply inelastic scattering. It is consistent with the previous calculation of light quark energy loss in the massless limit, but leads to a new correction term in the heavy quark case, which vanishes in the soft gluon radiation limit. We show numerically the significance of the new correction term in the calculation of heavy quark energy loss as compared to previous studies and with soft gluon radiation approximation.
97 - Yi-Lun Du 2020
In this proceedings, we review our recent work on the heavy quark radiative energy loss in nuclei due to multiple parton scattering within the recently improved high-twist approach, where gauge invariance can be ensured by a delicate setup of the initial partons transverse momenta. Our new result is consistent with the previous calculations of light quark energy loss in the massless limit and heavy quark energy loss in the soft gluon radiation limit, respectively. We show numerically the correction to the heavy quark energy loss as compared with previous result and with soft gluon radiation approximation. The necessity to go beyond soft gluon radiation limit is demonstrated for a global description of light and heavy flavor data in heavy-ion collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا