Do you want to publish a course? Click here

cofga: A Dataset for Fine Grained Classification of Objects from Aerial Imagery

188   0   0.0 ( 0 )
 Added by Amit Amram
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Detection and classification of objects in overhead images are two important and challenging problems in computer vision. Among various research areas in this domain, the task of fine-grained classification of objects in overhead images has become ubiquitous in diverse real-world applications, due to recent advances in high-resolution satellite and airborne imaging systems. The small inter-class variations and the large intra class variations caused by the fine grained nature make it a challenging task, especially in low-resource cases. In this paper, we introduce COFGA a new open dataset for the advancement of fine-grained classification research. The 2,104 images in the dataset are collected from an airborne imaging system at 5 15 cm ground sampling distance, providing higher spatial resolution than most public overhead imagery datasets. The 14,256 annotated objects in the dataset were classified into 2 classes, 15 subclasses, 14 unique features, and 8 perceived colors a total of 37 distinct labels making it suitable to the task of fine-grained classification more than any other publicly available overhead imagery dataset. We compare COFGA to other overhead imagery datasets and then describe some distinguished fine-grain classification approaches that were explored during an open data-science competition we have conducted for this task.



rate research

Read More

Food classification is a challenging problem due to the large number of categories, high visual similarity between different foods, as well as the lack of datasets for training state-of-the-art deep models. Solving this problem will require advances in both computer vision models as well as datasets for evaluating these models. In this paper we focus on the second aspect and introduce FoodX-251, a dataset of 251 fine-grained food categories with 158k images collected from the web. We use 118k images as a training set and provide human verified labels for 40k images that can be used for validation and testing. In this work, we outline the procedure of creating this dataset and provide relevant baselines with deep learning models. The FoodX-251 dataset has been used for organizing iFood-2019 challenge in the Fine-Grained Visual Categorization workshop (FGVC6 at CVPR 2019) and is available for download.
68 - Roman Solovyev 2020
This paper describes an algorithm for classification of roof materials using aerial photographs. Main advantages of the algorithm are proposed methods to improve prediction accuracy. Proposed methods includes: method of converting ImageNet weights of neural networks for using multi-channel images; special set of features of second level models that are used in addition to specific predictions of neural networks; special set of image augmentations that improve training accuracy. In addition, complete flow for solving this problem is proposed. The following content is available in open access: solution code, weight sets and architecture of the used neural networks. The proposed solution achieved second place in the competition Open AI Caribbean Challenge.
We introduce RP2K, a new large-scale retail product dataset for fine-grained image classification. Unlike previous datasets focusing on relatively few products, we collect more than 500,000 images of retail products on shelves belonging to 2000 different products. Our dataset aims to advance the research in retail object recognition, which has massive applications such as automatic shelf auditing and image-based product information retrieval. Our dataset enjoys following properties: (1) It is by far the largest scale dataset in terms of product categories. (2) All images are captured manually in physical retail stores with natural lightings, matching the scenario of real applications. (3) We provide rich annotations to each object, including the sizes, shapes and flavors/scents. We believe our dataset could benefit both computer vision research and retail industry. Our dataset is publicly available at https://www.pinlandata.com/rp2k_dataset.
With the rapid development of deep learning, many deep learning-based approaches have made great achievements in object detection task. It is generally known that deep learning is a data-driven method. Data directly impact the performance of object detectors to some extent. Although existing datasets have included common objects in remote sensing images, they still have some limitations in terms of scale, categories, and images. Therefore, there is a strong requirement for establishing a large-scale benchmark on object detection in high-resolution remote sensing images. In this paper, we propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery which is named as FAIR1M. All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes. Compared with existing detection datasets dedicated to object detection, the FAIR1M dataset has 4 particular characteristics: (1) it is much larger than other existing object detection datasets both in terms of the quantity of instances and the quantity of images, (2) it provides more rich fine-grained category information for objects in remote sensing images, (3) it contains geographic information such as latitude, longitude and resolution, (4) it provides better image quality owing to a careful data cleaning procedure. To establish a baseline for fine-grained object recognition, we propose a novel evaluation method and benchmark fine-grained object detection tasks and a visual classification task using several State-Of-The-Art (SOTA) deep learning-based models on our FAIR1M dataset. Experimental results strongly indicate that the FAIR1M dataset is closer to practical application and it is considerably more challenging than existing datasets.
121 - Yi Liu , Limin Wang , Xiao Ma 2021
Temporal action localization (TAL) is an important and challenging problem in video understanding. However, most existing TAL benchmarks are built upon the coarse granularity of action classes, which exhibits two major limitations in this task. First, coarse-level actions can make the localization models overfit in high-level context information, and ignore the atomic action details in the video. Second, the coarse action classes often lead to the ambiguous annotations of temporal boundaries, which are inappropriate for temporal action localization. To tackle these problems, we develop a novel large-scale and fine-grained video dataset, coined as FineAction, for temporal action localization. In total, FineAction contains 103K temporal instances of 106 action categories, annotated in 17K untrimmed videos. FineAction introduces new opportunities and challenges for temporal action localization, thanks to its distinct characteristics of fine action classes with rich diversity, dense annotations of multiple instances, and co-occurring actions of different classes. To benchmark FineAction, we systematically investigate the performance of several popular temporal localization methods on it, and deeply analyze the influence of short-duration and fine-grained instances in temporal action localization. We believe that FineAction can advance research of temporal action localization and beyond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا