Do you want to publish a course? Click here

FineAction: A Fine-Grained Video Dataset for Temporal Action Localization

122   0   0.0 ( 0 )
 Added by Yi Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Temporal action localization (TAL) is an important and challenging problem in video understanding. However, most existing TAL benchmarks are built upon the coarse granularity of action classes, which exhibits two major limitations in this task. First, coarse-level actions can make the localization models overfit in high-level context information, and ignore the atomic action details in the video. Second, the coarse action classes often lead to the ambiguous annotations of temporal boundaries, which are inappropriate for temporal action localization. To tackle these problems, we develop a novel large-scale and fine-grained video dataset, coined as FineAction, for temporal action localization. In total, FineAction contains 103K temporal instances of 106 action categories, annotated in 17K untrimmed videos. FineAction introduces new opportunities and challenges for temporal action localization, thanks to its distinct characteristics of fine action classes with rich diversity, dense annotations of multiple instances, and co-occurring actions of different classes. To benchmark FineAction, we systematically investigate the performance of several popular temporal localization methods on it, and deeply analyze the influence of short-duration and fine-grained instances in temporal action localization. We believe that FineAction can advance research of temporal action localization and beyond.

rate research

Read More

Human pose is a useful feature for fine-grained sports action understanding. However, pose estimators are often unreliable when run on sports video due to domain shift and factors such as motion blur and occlusions. This leads to poor accuracy when downstream tasks, such as action recognition, depend on pose. End-to-end learning circumvents pose, but requires more labels to generalize. We introduce Video Pose Distillation (VPD), a weakly-supervised technique to learn features for new video domains, such as individual sports that challenge pose estimation. Under VPD, a student network learns to extract robust pose features from RGB frames in the sports video, such that, whenever pose is considered reliable, the features match the output of a pretrained teacher pose detector. Our strategy retains the best of both pose and end-to-end worlds, exploiting the rich visual patterns in raw video frames, while learning features that agree with the athletes pose and motion in the target video domain to avoid over-fitting to patterns unrelated to athletes motion. VPD features improve performance on few-shot, fine-grained action recognition, retrieval, and detection tasks in four real-world sports video datasets, without requiring additional ground-truth pose annotations.
Food classification is a challenging problem due to the large number of categories, high visual similarity between different foods, as well as the lack of datasets for training state-of-the-art deep models. Solving this problem will require advances in both computer vision models as well as datasets for evaluating these models. In this paper we focus on the second aspect and introduce FoodX-251, a dataset of 251 fine-grained food categories with 158k images collected from the web. We use 118k images as a training set and provide human verified labels for 40k images that can be used for validation and testing. In this work, we outline the procedure of creating this dataset and provide relevant baselines with deep learning models. The FoodX-251 dataset has been used for organizing iFood-2019 challenge in the Fine-Grained Visual Categorization workshop (FGVC6 at CVPR 2019) and is available for download.
Nowadays, billions of videos are online ready to be viewed and shared. Among an enormous volume of videos, some popular ones are widely viewed by online users while the majority attract little attention. Furthermore, within each video, different segments may attract significantly different numbers of views. This phenomenon leads to a challenging yet important problem, namely fine-grained video attractiveness prediction. However, one major obstacle for such a challenging problem is that no suitable benchmark dataset currently exists. To this end, we construct the first fine-grained video attractiveness dataset, which is collected from one of the most popular video websites in the world. In total, the constructed FVAD consists of 1,019 drama episodes with 780.6 hours covering different categories and a wide variety of video contents. Apart from the large amount of videos, hundreds of millions of user behaviors during watching videos are also included, such as view counts, fast-forward, fast-rewind, and so on, where view counts reflects the video attractiveness while other engagements capture the interactions between the viewers and videos. First, we demonstrate that video attractiveness and different engagements present different relationships. Second, FVAD provides us an opportunity to study the fine-grained video attractiveness prediction problem. We design different sequential models to perform video attractiveness prediction by relying solely on video contents. The sequential models exploit the multimodal relationships between visual and audio components of the video contents at different levels. Experimental results demonstrate the effectiveness of our proposed sequential models with different visual and audio representations, the necessity of incorporating the two modalities, and the complementary behaviors of the sequential prediction models at different levels.
Current state-of-the-art approaches for spatio-temporal action localization rely on detections at the frame level that are then linked or tracked across time. In this paper, we leverage the temporal continuity of videos instead of operating at the frame level. We propose the ACtion Tubelet detector (ACT-detector) that takes as input a sequence of frames and outputs tubelets, i.e., sequences of bounding boxes with associated scores. The same way state-of-the-art object detectors rely on anchor boxes, our ACT-detector is based on anchor cuboids. We build upon the SSD framework. Convolutional features are extracted for each frame, while scores and regressions are based on the temporal stacking of these features, thus exploiting information from a sequence. Our experimental results show that leveraging sequences of frames significantly improves detection performance over using individual frames. The gain of our tubelet detector can be explained by both more accurate scores and more precise localization. Our ACT-detector outperforms the state-of-the-art methods for frame-mAP and video-mAP on the J-HMDB and UCF-101 datasets, in particular at high overlap thresholds.
Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا