Do you want to publish a course? Click here

Markov Genealogy Processes

99   0   0.0 ( 0 )
 Added by Aaron King
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population process. These lead to a version of the nonlinear filtering equation, which can be used to design efficient Monte Carlo inference algorithms. Existing full-information approaches for phylodynamic inference are special cases of the theory.



rate research

Read More

We investigate the behaviour of the genealogy of a Wright-Fisher population model under the influence of a strong seed-bank effect. More precisely, we consider a simple seed-bank age distribution with two atoms, leading to either classical or long genealogical jumps (the latter modeling the effect of seed-dormancy). We assume that the length of these long jumps scales like a power $N^beta$ of the original population size $N$, thus giving rise to a `strong seed-bank effect. For a certain range of $beta$, we prove that the ancestral process of a sample of $n$ individuals converges under a non-classical time-scaling to Kingmans $n-$coalescent. Further, for a wider range of parameters, we analyze the time to the most recent common ancestor of two individuals analytically and by simulation.
107 - Sean D Lawley 2019
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than the FPT of a single searcher. Extreme FPTs of diffusion have been studied for decades, but little is known for other types of stochastic processes. In this paper, we study the distribution of extreme FPTs of piecewise deterministic Markov processes (PDMPs). PDMPs are a broad class of stochastic processes that evolve deterministically between random events. Using classical extreme value theory, we prove general theorems which yield the distribution and moments of extreme FPTs in the limit of many searchers based on the short time distribution of the FPT of a single searcher. We then apply these theorems to some canonical PDMPs, including run and tumble searchers in one, two, and three space dimensions. We discuss our results in the context of some biological systems and show how our approach accounts for an unphysical property of diffusion which can be problematic for extreme statistics.
52 - Michael Baake 2019
The representation problem of finite-dimensional Markov matrices in Markov semigroups is revisited, with emphasis on concrete criteria for matrix subclasses of theoretical or practical relevance, such as equal-input, circulant, symmetric or doubly stochastic matrices. Here, we pay special attention to various algebraic properties of the embedding problem, and discuss the connection with the centraliser of a Markov matrix.
129 - Jean Bertoin 2009
We consider a (sub) critical Galton-Watson process with neutral mutations (infinite alleles model), and decompose the entire population into clusters of individuals carrying the same allele. We specify the law of this allelic partition in terms of the distribution of the number of clone-children and the number of mutant-children of a typical individual. The approach combines an extension of Harris representation of Galton-Watson processes and a version of the ballot theorem. Some limit theorems related to the distribution of the allelic partition are also given.
Using time-reversal, we introduce a stochastic integral for zero-energy additive functionals of symmetric Markov processes, extending earlier work of S. Nakao. Various properties of such stochastic integrals are discussed and an It^{o} formula for Dirichlet processes is obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا