Do you want to publish a course? Click here

Notes on Markov embedding

53   0   0.0 ( 0 )
 Added by Michael Baake
 Publication date 2019
  fields Biology
and research's language is English
 Authors Michael Baake




Ask ChatGPT about the research

The representation problem of finite-dimensional Markov matrices in Markov semigroups is revisited, with emphasis on concrete criteria for matrix subclasses of theoretical or practical relevance, such as equal-input, circulant, symmetric or doubly stochastic matrices. Here, we pay special attention to various algebraic properties of the embedding problem, and discuss the connection with the centraliser of a Markov matrix.



rate research

Read More

We construct a family of genealogy-valued Markov processes that are induced by a continuous-time Markov population process. We derive exact expressions for the likelihood of a given genealogy conditional on the history of the underlying population process. These lead to a version of the nonlinear filtering equation, which can be used to design efficient Monte Carlo inference algorithms. Existing full-information approaches for phylodynamic inference are special cases of the theory.
113 - Arnaud Personne 2018
Moran or Wright-Fisher processes are probably the most well known model to study the evolution of a population under various effects. Our object of study will be the Simpson index which measures the level of diversity of the population, one of the key parameter for ecologists who study for example forest dynamics. Following ecological motivations, we will consider here the case where there are various species with fitness and immigration parameters being random processes (and thus time evolving). To measure biodiversity, ecologists generally use the Simpson index, who has no closed formula, except in the neutral (no selection) case via a backward approach, and which is difficult to evaluate even numerically when the population size is large. Our approach relies on the large population limit in the weak selection case, and thus to give a procedure which enable us to approximate, with controlled rate, the expectation of the Simpson index at fixed time. Our approach will be forward and valid for all time, which is the main difference with the historical approach of Kingman, or Krone-Neuhauser. We will also study the long time behaviour of the Wright-Fisher process in a simplified setting, allowing us to get a full picture for the approximation of the expectation of the Simpson index.
We reconsider the deterministic haploid mutation-selection equation with two types. This is an ordinary differential equation that describes the type distribution (forward in time) in a population of infinite size. This paper establishes ancestral (random) structures inherent in this deterministic model. In a first step, we obtain a representation of the deterministic equations solution (and, in particular, of its equilibrium) in terms of an ancestral process called the killed ancestral selection graph. This representation allows one to understand the bifurcations related to the error threshold phenomenon from a genealogical point of view. Next, we characterise the ancestral type distribution by means of the pruned lookdown ancestral selection graph and study its properties at equilibrium. We also provide an alternative characterisation in terms of a piecewise-deterministic Markov process. Throughout, emphasis is on the underlying dualities as well as on explicit results.
107 - Sean D Lawley 2019
The time it takes the fastest searcher out of $Ngg1$ searchers to find a target determines the timescale of many physical, chemical, and biological processes. This time is called an extreme first passage time (FPT) and is typically much faster than the FPT of a single searcher. Extreme FPTs of diffusion have been studied for decades, but little is known for other types of stochastic processes. In this paper, we study the distribution of extreme FPTs of piecewise deterministic Markov processes (PDMPs). PDMPs are a broad class of stochastic processes that evolve deterministically between random events. Using classical extreme value theory, we prove general theorems which yield the distribution and moments of extreme FPTs in the limit of many searchers based on the short time distribution of the FPT of a single searcher. We then apply these theorems to some canonical PDMPs, including run and tumble searchers in one, two, and three space dimensions. We discuss our results in the context of some biological systems and show how our approach accounts for an unphysical property of diffusion which can be problematic for extreme statistics.
We consider sampling and enumeration problems for Markov equivalence classes. We create and analyze a Markov chain for uniform random sampling on the DAGs inside a Markov equivalence class. Though the worst case is exponentially slow mixing, we find a condition on the Markov equivalence class for polynomial time mixing. We also investigate the ratio of Markov equivalence classes to DAGs and a Markov chain of He, Jia, and Yu for random sampling of sparse Markov equivalence classes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا