Do you want to publish a course? Click here

Learning a Model-Driven Variational Network for Deformable Image Registration

153   0   0.0 ( 0 )
 Added by Xi Jia
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Data-driven deep learning approaches to image registration can be less accurate than conventional iterative approaches, especially when training data is limited. To address this whilst retaining the fast inference speed of deep learning, we propose VR-Net, a novel cascaded variational network for unsupervised deformable image registration. Using the variable splitting optimization scheme, we first convert the image registration problem, established in a generic variational framework, into two sub-problems, one with a point-wise, closed-form solution while the other one is a denoising problem. We then propose two neural layers (i.e. warping layer and intensity consistency layer) to model the analytical solution and a residual U-Net to formulate the denoising problem (i.e. generalized denoising layer). Finally, we cascade the warping layer, intensity consistency layer, and generalized denoising layer to form the VR-Net. Extensive experiments on three (two 2D and one 3D) cardiac magnetic resonance imaging datasets show that VR-Net outperforms state-of-the-art deep learning methods on registration accuracy, while maintains the fast inference speed of deep learning and the data-efficiency of variational model.



rate research

Read More

218 - Kaicong Sun , Sven Simon 2020
Deformable image registration is a fundamental task in medical imaging. Due to the large computational complexity of deformable registration of volumetric images, conventional iterative methods usually face the tradeoff between the registration accuracy and the computation time in practice. In order to boost the registration performance in both accuracy and runtime, we propose a fast convolutional neural network. Specially, to efficiently utilize the memory resources and enlarge the model capacity, we adopt additive forwarding instead of channel concatenation and deepen the network in each encoder and decoder stage. To facilitate the learning efficiency, we leverage skip connection within the encoder and decoder stages to enable residual learning and employ an auxiliary loss at the bottom layer with lowest resolution to involve deep supervision. Particularly, the low-resolution auxiliary loss is weighted by an exponentially decayed parameter during the training phase. In conjunction with the main loss in high-resolution grid, a coarse-to-fine learning strategy is achieved. Last but not least, we introduce an auxiliary loss based on the segmentation prior to improve the registration performance in Dice score. Comparing to the auxiliary loss using average Dice score, the proposed multi-label segmentation loss does not induce additional memory cost in the training phase and can be employed on images with arbitrary amount of categories. In the experiments, we show FDRN outperforms the existing state-of-the-art registration methods for brain MR images by resorting to the compact network structure and efficient learning. Besides, FDRN is a generalized framework for image registration which is not confined to a particular type of medical images or anatomy.
Spatially aligning medical images from different modalities remains a challenging task, especially for intraoperative applications that require fast and robust algorithms. We propose a weakly-supervised, label-driven formulation for learning 3D voxel correspondence from higher-level label correspondence, thereby bypassing classical intensity-based image similarity measures. During training, a convolutional neural network is optimised by outputting a dense displacement field (DDF) that warps a set of available anatomical labels from the moving image to match their corresponding counterparts in the fixed image. These label pairs, including solid organs, ducts, vessels, point landmarks and other ad hoc structures, are only required at training time and can be spatially aligned by minimising a cross-entropy function of the warped moving label and the fixed label. During inference, the trained network takes a new image pair to predict an optimal DDF, resulting in a fully-automatic, label-free, real-time and deformable registration. For interventional applications where large global transformation prevails, we also propose a neural network architecture to jointly optimise the global- and local displacements. Experiment results are presented based on cross-validating registrations of 111 pairs of T2-weighted magnetic resonance images and 3D transrectal ultrasound images from prostate cancer patients with a total of over 4000 anatomical labels, yielding a median target registration error of 4.2 mm on landmark centroids and a median Dice of 0.88 on prostate glands.
We introduce a learning strategy for contrast-invariant image registration without requiring imaging data. While classical registration methods accurately estimate the spatial correspondence between images, they solve a costly optimization problem for every image pair. Learning-based techniques are fast at test time, but can only register images with image contrast and geometric content that are similar to those available during training. We focus on removing this image-data dependency of learning methods. Our approach leverages a generative model for diverse label maps and images that exposes networks to a wide range of variability during training, forcing them to learn features invariant to image type (contrast). This strategy results in powerful networks trained to generalize to a broad array of real input images. We present extensive experiments, with a focus on 3D neuroimaging, showing that this strategy enables robust registration of arbitrary image contrasts without the need to retrain for new modalities. We demonstrate registration accuracy that most often surpasses the state of the art both within and across modalities, using a single model. Critically, we show that input labels from which we synthesize images need not be of actual anatomy: training on randomly generated geometric shapes also results in competitive registration performance, albeit slightly less accurate, while alleviating the dependency on real data of any kind. Our code is available at: http://voxelmorph.csail.mit.edu
Deformable registration is one of the most challenging task in the field of medical image analysis, especially for the alignment between different sequences and modalities. In this paper, a non-rigid registration method is proposed for 3D medical images leveraging unsupervised learning. To the best of our knowledge, this is the first attempt to introduce gradient loss into deep-learning-based registration. The proposed gradient loss is robust across sequences and modals for large deformation. Besides, adversarial learning approach is used to transfer multi-modal similarity to mono-modal similarity and improve the precision. Neither ground-truth nor manual labeling is required during training. We evaluated our network on a 3D brain registration task comprehensively. The experiments demonstrate that the proposed method can cope with the data which has non-functional intensity relations, noise and blur. Our approach outperforms other methods especially in accuracy and speed.
135 - Zhe Xu , Jie Luo , Jiangpeng Yan 2020
Deformable image registration (DIR) is essential for many image-guided therapies. Recently, deep learning approaches have gained substantial popularity and success in DIR. Most deep learning approaches use the so-called mono-stream high-to-low, low-to-high network structure, and can achieve satisfactory overall registration results. However, accurate alignments for some severely deformed local regions, which are crucial for pinpointing surgical targets, are often overlooked. Consequently, these approaches are not sensitive to some hard-to-align regions, e.g., intra-patient registration of deformed liver lobes. In this paper, we propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet), for deformable registration of severely deformed organs. The proposed method combines two parallel processing streams in a residual learning fashion. One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration. The other stream learns the deep multi-scale residual representations to obtain robust recognition. We also factorize the 3D convolution to reduce the training parameters and enhance network efficiency. We validate the proposed method on a clinically acquired intra-patient abdominal CT-MRI dataset and a public inspiratory and expiratory thorax CT dataset. Experiments on both multimodal and unimodal registration demonstrate promising results compared to state-of-the-art approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا