Do you want to publish a course? Click here

Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-Step Rewriting

87   0   0.0 ( 0 )
 Added by Yi Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.



rate research

Read More

Data-to-text generation can be conceptually divided into two parts: ordering and structuring the information (planning), and generating fluent language describing the information (realization). Modern neural generation systems conflate these two steps into a single end-to-end differentiable system. We propose to split the generation process into a symbolic text-planning stage that is faithful to the input, followed by a neural generation stage that focuses only on realization. For training a plan-to-text generator, we present a method for matching reference texts to their corresponding text plans. For inference time, we describe a method for selecting high-quality text plans for new inputs. We implement and evaluate our approach on the WebNLG benchmark. Our results demonstrate that decoupling text planning from neural realization indeed improves the systems reliability and adequacy while maintaining fluent output. We observe improvements both in BLEU scores and in manual evaluations. Another benefit of our approach is the ability to output diverse realizations of the same input, paving the way to explicit control over the generated text structure.
154 - Shuyang Cao , Lu Wang 2021
We investigate the less-explored task of generating open-ended questions that are typically answered by multiple sentences. We first define a new question type ontology which differentiates the nuanced nature of questions better than widely used question words. A new dataset with 4,959 questions is labeled based on the new ontology. We then propose a novel question type-aware question generation framework, augmented by a semantic graph representation, to jointly predict question focuses and produce the question. Based on this framework, we further use both exemplars and automatically generated templates to improve controllability and diversity. Experiments on two newly collected large-scale datasets show that our model improves question quality over competitive comparisons based on automatic metrics. Human judges also rate our model outputs highly in answerability, coverage of scope, and overall quality. Finally, our model variants with templates can produce questions with enhanced controllability and diversity.
Latent space based GAN methods and attention based sequence to sequence models have achieved impressive results in text generation and unsupervised machine translation respectively. Leveraging the two domains, we propose an adversarial latent space based model capable of generating parallel sentences in two languages concurrently and translating bidirectionally. The bilingual generation goal is achieved by sampling from the latent space that is shared between both languages. First two denoising autoencoders are trained, with shared encoders and back-translation to enforce a shared latent state between the two languages. The decoder is shared for the two translation directions. Next, a GAN is trained to generate synthetic code mimicking the languages shared latent space. This code is then fed into the decoder to generate text in either language. We perform our experiments on Europarl and Multi30k datasets, on the English-French language pair, and document our performance using both supervised and unsupervised machine translation.
We propose a new length-controllable abstractive summarization model. Recent state-of-the-art abstractive summarization models based on encoder-decoder models generate only one summary per source text. However, controllable summarization, especially of the length, is an important aspect for practical applications. Previous studies on length-controllable abstractive summarization incorporate length embeddings in the decoder module for controlling the summary length. Although the length embeddings can control where to stop decoding, they do not decide which information should be included in the summary within the length constraint. Unlike the previous models, our length-controllable abstractive summarization model incorporates a word-level extractive module in the encoder-decoder model instead of length embeddings. Our model generates a summary in two steps. First, our word-level extractor extracts a sequence of important words (we call it the prototype text) from the source text according to the word-level importance scores and the length constraint. Second, the prototype text is used as additional input to the encoder-decoder model, which generates a summary by jointly encoding and copying words from both the prototype text and source text. Since the prototype text is a guide to both the content and length of the summary, our model can generate an informative and length-controlled summary. Experiments with the CNN/Daily Mail dataset and the NEWSROOM dataset show that our model outperformed previous models in length-controlled settings.
119 - Yu Wang , Yilin Shen , Hongxia Jin 2021
Most of the existing spoken language understanding systems can perform only semantic frame parsing based on a single-round user query. They cannot take users feedback to update/add/remove slot values through multiround interactions with users. In this paper, we introduce a novel multi-step spoken language understanding system based on adversarial learning that can leverage the multiround users feedback to update slot values. We perform two experiments on the benchmark ATIS dataset and demonstrate that the new system can improve parsing performance by at least $2.5%$ in terms of F1, with only one round of feedback. The improvement becomes even larger when the number of feedback rounds increases. Furthermore, we also compare the new system with state-of-the-art dialogue state tracking systems and demonstrate that the new interactive system can perform better on multiround spoken language understanding tasks in terms of slot- and sentence-level accuracy.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا