Do you want to publish a course? Click here

Complex magnetic textures in Ni/Ir$_{n}$/Pt(111) ultrathin films

85   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A combined approach using first-principles calculations and spin dynamics simulations is applied to study Ni/Ir$_{n}$/Pt(111) ($n=0,1,2$) films. The lowest-energy states are predicted to be almost degenerate with negligble energy differences between pure spin-spiral and skyrmionic states. Moreover, for $n=0$ and $n=1$, we found that metastable skyrmioniums can occur, which are characterized by a slightly lower stability with respect to the external fields, enhanced lifetime, and the same critical current density as skyrmions. The spontaneous low temperature skyrmions, with $sim$10 nm to $sim$20 nm size, arise from a large Dzyaloshinskii-Moriya (DM) and Heisenberg exchange interactions ratio and, in particular, from a large in-plane DM vector component for nearest neighbors. The skyrmions become larger, faster and more dispersed with the enhancement of the Ir buffer thickness. Also, with increasing textit{n}, the skyrmions stability decrease when an external magnetic field is applied or the temperature is raised.

rate research

Read More

We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
The structural and magnetic properties of ultrathin FeO(111) films on Pt(111) with thicknesses from 1 to 16 monolayers (ML) were studied using the nuclear inelastic scattering (NIS) of synchrotron radiation. Distinct evolution of vibrational characteristics with thickness that is revealed in the phonon density of states (PDOS) witnesses a textbook transition from 2D to 3D lattice dynamics. For the thinnest films of 1 and 2 ML, the low energy part of the PDOS followed a linear dependence in energy that is characteristic for 2-dimensional systems. This dependence gradually transforms with thickness to the bulk ~E-square relation. Density functional theory phonon calculations perfectly reproduced the measured 1 ML PDOS within a simple model of a pseudomorphic FeO/Pt(111) interface. The calculations show that the 2D PDOS character is due to a weak coupling of the FeO film to the Pt(111) substrate. The evolution of the vibrational properties with an increasing thickness is closely related to a transient long range magnetic order and stabilization of an unusual structural phase.
We examine magnetic domain patterns in symmetric [Co/Ni]$_M$ and asymmetric [Pt/(Co/Ni)$_M$/Ir]$_N$ multi-layers using Fresnel mode Lorentz transmission electron microscopy (LTEM). In the symmetric multi-layer, where the Dzyaloshinskii-Moriya Interaction is expected to be zero, we observe purely Bloch type domain walls with no preferred chirality. In the asymmetric multi-layers, where significant interfacial DMI is present, we observe domain patterns with chiral Neel domain walls, which evolve into sub-100nm isolated Neel Skyrmions with the application of a perpendicular field. The impact of layer thickness and film stack on interfacial magnetic properties is discussed in the context of developing a tunable multi-layer system for future spintronic applications.
We examine the substructures of magnetic domain walls (DWs) in [Pt/(Co/Ni)$_M$/Ir]$_N$ multi-layers using a combination of micromagnetic theory and Lorentz transmission electron microscopy (LTEM). Thermal stability calculations of Q=$pm$1 substructures (2-$pi$ vertical Bloch lines (VBLs) and DW skyrmions) were performed using a geodesic nudged elastic band (GNEB) model, which supports their metastability at room temperature. Experimental variation in strength of the interfacial Dzyaloshinskii-Moriya interaction (DMI) and film thickness reveals conditions under which these substructures are present and enables the formation of a magnetic phase diagram. Reduced thickness is found to favor Q=$pm$1 substructures likely due to the suppression of hybrid DWs. The results from this study provide an important framework for examining 1-D DW substructures in chiral magnetic materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا