No Arabic abstract
We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
In using the fully relativist
We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an atomistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy, and the Dzyaloshinskii Moriya interaction depending on the stacking sequence of the Fe double-layer. Based on our findings, we suggest a new technique to engineer Dzyaloshinskii Moriya interactions in multilayer systems employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize higher-order skyrmions or antiskyrmions.
We have performed electron energy-loss spectroscopy (EELS) studies of Ni(111), graphene/Ni(111), and the graphene/Au/Ni(111) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the pi plasmon excitation for the graphene/Ni(111) system is observed compared to that for bulk pristine and intercalated graphite and to linear for free graphene, reflecting the strong changes in the electronic structure of graphene on Ni(111) relative to free-standing graphene. We have also found that intercalation of gold underneath a graphene layer on Ni(111) leads to the disappearance of the EELS spectral features which are characteristic of the graphene/Ni(111) interface. At the same time the shift of the pi plasmon to the lower loss-energies is observed, indicating the transition of initial system of strongly bonded graphene on Ni(111) to a quasi free-standing-like graphene state.
Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
A combined approach using first-principles calculations and spin dynamics simulations is applied to study Ni/Ir$_{n}$/Pt(111) ($n=0,1,2$) films. The lowest-energy states are predicted to be almost degenerate with negligble energy differences between pure spin-spiral and skyrmionic states. Moreover, for $n=0$ and $n=1$, we found that metastable skyrmioniums can occur, which are characterized by a slightly lower stability with respect to the external fields, enhanced lifetime, and the same critical current density as skyrmions. The spontaneous low temperature skyrmions, with $sim$10 nm to $sim$20 nm size, arise from a large Dzyaloshinskii-Moriya (DM) and Heisenberg exchange interactions ratio and, in particular, from a large in-plane DM vector component for nearest neighbors. The skyrmions become larger, faster and more dispersed with the enhancement of the Ir buffer thickness. Also, with increasing textit{n}, the skyrmions stability decrease when an external magnetic field is applied or the temperature is raised.