Do you want to publish a course? Click here

Effective GUP-modified Raychaudhuri equation and black hole singularity: four models

88   0   0.0 ( 0 )
 Added by Saeed Rastgoo
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The classical Raychaudhuri equation predicts the formation of conjugate points for a congruence of geodesics, in a finite proper time. This in conjunction with the Hawking-Penrose singularity theorems predicts the incompleteness of geodesics and thereby the singular nature of practically all spacetimes. We compute the generic corrections to the Raychaudhuri equation in the interior of a Schwarzschild black hole, arising from modifications to the algebra inspired by the generalized uncertainty principle (GUP) theories. Then we study four specific models of GUP, compute their effective dynamics as well as their expansion and its rate of change using the Raychaudhuri equation. We show that the modification from GUP in two of these models, where such modifications are dependent of the configuration variables, lead to finite Kretchmann scalar, expansion and its rate, hence implying the resolution of the singularity. However, the other two models for which the modifications depend on the momenta still retain their singularities even in the effective regime.



rate research

Read More

143 - Saurya Das 2013
We compute quantum corrections to the Raychaudhuri equation, by replacing classical geodesics with quantal (Bohmian) trajectories, and show that they prevent focusing of geodesics, and the formation of conjugate points. We discuss implications for the Hawking-Penrose singularity theorems, and for curvature singularities.
We consider quantum corrections for the Schwarzschild black hole metric by using the generalized uncertainty principle (GUP) to investigate quasinormal modes, shadow and their relationship in the eikonal limit. We calculate the quasinormal frequencies of the quantum-corrected Schwarzschild black hole by using the sixth-order Wentzel-Kramers-Brillouin (WKB) approximation, and also perform a numerical analysis that confirms the results obtained from this approach. We also find that the shadow radius is nonzero even at very small mass limit for finite GUP parameter.
In this paper we have implemented quantum corrections for the Schwarzschild black hole metric using the generalized uncertainty principle (GUP) in order to investigate the scattering process. We mainly compute, at the low energy limit, the differential scattering and absorption cross section by using the partial wave method. We determine the phase shift analytically and verify that these quantities are modified by the GUP. We found that due to the quantum corrections from the GUP the absorption is not zero as the mass parameter goes to zero. A numerical analysis has also been performed for arbitrary frequencies.
106 - Saurya Das 2017
The above comment [E. I. Lashin, D. Dou, arXiv:1606.04738] claims that the paper Quantum Raychaudhuri Equation by S. Das, Phys. Rev. D89 (2014) 084068 [arXiv:1404.3093] has problematic points with regards to its derivation and implications. We show below that the above claim is incorrect, and that there are no problems with results of the above paper or its implications.
In this article, the bulk viscosity is introduced in a modified gravity model. The gravitational action has a general $f(R,T)$ form, where $R$ and $ T $ are the curvature scalar and the trace of energy momentum tensor respectively. An effective equation of state (EoS) has been investigated in the cosmological evolution with bulk viscosity. In the present scenario, the Hubble parameter which has a scaling relation with the redshift can be obtained generically. The role of deceleration parameter $q$ and equation of state parameter $omega $ is discussed to explain the late-time accelerating expansion of the universe. The statefinder parameters and Om diagnostic analysis are discussed for our obtained model to distinguish from other dark energy models together with the analysis of energy conditions and velocity of sound for the model. We have also numerically investigated the model by detailed maximum likelihood analysis of $580$ Type Ia supernovae from Union $ 2.1$ compilation datasets and updated $57$ Hubble datasets ($31$ data points from differential age method and $26$ points from BAO and other methods). It is with efforts found that the present model is in good agreement with observations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا