No Arabic abstract
In this article, the bulk viscosity is introduced in a modified gravity model. The gravitational action has a general $f(R,T)$ form, where $R$ and $ T $ are the curvature scalar and the trace of energy momentum tensor respectively. An effective equation of state (EoS) has been investigated in the cosmological evolution with bulk viscosity. In the present scenario, the Hubble parameter which has a scaling relation with the redshift can be obtained generically. The role of deceleration parameter $q$ and equation of state parameter $omega $ is discussed to explain the late-time accelerating expansion of the universe. The statefinder parameters and Om diagnostic analysis are discussed for our obtained model to distinguish from other dark energy models together with the analysis of energy conditions and velocity of sound for the model. We have also numerically investigated the model by detailed maximum likelihood analysis of $580$ Type Ia supernovae from Union $ 2.1$ compilation datasets and updated $57$ Hubble datasets ($31$ data points from differential age method and $26$ points from BAO and other methods). It is with efforts found that the present model is in good agreement with observations.
New high-precision observations are now possible to constrain different gravity theories. To examine the accelerated expansion of the Universe, we used the newly proposed $f(Q,T)$ gravity, where $Q$ is the non-metricity, and $T$ is the trace of the energy-momentum tensor. The investigation is carried out using a parameterized effective equation of state with two parameters, $m$ and $n$. We have also considered the linear form of $f(Q,T)= Q+bT$, where $b$ is constant. By constraining the model with the recently published 1048 Pantheon sample, we were able to find the best fitting values for the parameters $b$, $m$, and $n$. The model appears to be in good agreement with the observations. Finally, we analyzed the behavior of the deceleration parameter and equation of state parameter. The results support the feasibility of $f(Q,T)$ as a promising theory of gravity, illuminating a new direction towards explaining the Universes dark sector.
The paper presents late time cosmology in $f(Q,T)$ gravity where the dark energy is purely geometric in nature. We start by employing a well motivated $f(Q,T)$ gravity model, $f(Q,T)=mQ^{n}+bT$ where $m,n$ and $b$ are model parameters. Additionally we also assume the universe to be dominated by pressure-less matter which yields a power law type scale factor of the form $% a(t)=c_{2}(At+c_{1})^{frac{1}{A}}$, where $A=dfrac{3(8pi +b)}{n(16pi +3b)% }$ and $c_{1}$ & $c_{2}$ are just integration constants. To investigate the cosmological viability of the model, constraints on the model parameters were imposed from the updated 57 points of Hubble data sets and 580 points of union 2.1 compilation supernovae data sets. We have thoroughly investigated the nature of geometrical dark energy mimicked by the parametrization of $f(Q,T)=mQ^{n}+bT$ with the assistance of statefinder diagnostic in ${s,r}$ and ${q,r}$ planes and also performed the $Om$ -diagnostic analysis. The present analysis makes it clear-cut that $f(Q,T)$ gravity can be promising in addressing the current cosmic acceleration and therefore a suitable alternative to the dark energy problem. Further studies in other cosmological areas are therefore encouraging to further investigate the viability of $f(Q,T)$ gravity.
We investigate how an equation of state for matter is affected when a gravity is present. For this purpose, we consider a box of ideal gas in the presence of Newtonian gravity. In addition to the ordinary thermodynamic quantities, a characteristic variable that represents a weight per unit area relative to the average pressure is required in order to describe a macroscopic state of the gas. Although the density and the pressure are not uniform due to the presence of gravity, the ideal gas law itself is satisfied for the thermodynamic quantities when averaged over the system. Assuming that the system follows an adiabatic process further, we obtain a {it new} relation between the averaged pressure and density, which differs from the conventional equation of state for the ideal gas in the absence of gravity. Applying our results to a small volume in a Newtonian star, however, we find that the conventional one is reliable for most astrophysical situations when the characteristic scale is small. On the other hand, gravity effects become significant near the surface of a Newtonian star.
The classical Raychaudhuri equation predicts the formation of conjugate points for a congruence of geodesics, in a finite proper time. This in conjunction with the Hawking-Penrose singularity theorems predicts the incompleteness of geodesics and thereby the singular nature of practically all spacetimes. We compute the generic corrections to the Raychaudhuri equation in the interior of a Schwarzschild black hole, arising from modifications to the algebra inspired by the generalized uncertainty principle (GUP) theories. Then we study four specific models of GUP, compute their effective dynamics as well as their expansion and its rate of change using the Raychaudhuri equation. We show that the modification from GUP in two of these models, where such modifications are dependent of the configuration variables, lead to finite Kretchmann scalar, expansion and its rate, hence implying the resolution of the singularity. However, the other two models for which the modifications depend on the momenta still retain their singularities even in the effective regime.
The standard formulation of general relativity fails to describe some recent interests in the universe. It impels us to go beyond the standard formulation of gravity. The $f(Q)$ gravity theory is an interesting modified theory of gravity, where the gravitational interaction is driven by the nonmetricity $Q$. This study aims to examine the cosmological models with the presence of bulk viscosity effect in the cosmological fluid within the framework of $f(Q)$ gravity. We construct three bulk viscous fluid models, i.e. (i) for the first model, we assuming the Lagrangian $f(Q)$ as linear dependence on $Q$, (ii) for the second model the Lagrangian $f(Q)$ as a polynomial functional form, and (iii) the Lagrangian $f(Q)$ as a logarithmic dependence on $Q$. Furthermore, we use 57 points of Hubble data and 1048 Pantheon dataset to constraint the model parameters. Then, we discuss all the energy conditions for each model, which helps us to test the self-consistency of our models. Finally, we present the profiles of the equation of state parameters to test the models present status.