Do you want to publish a course? Click here

Fine-Grained Attention for Weakly Supervised Object Localization

250   0   0.0 ( 0 )
 Added by Junghyo Sohn
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Although recent advances in deep learning accelerated an improvement in a weakly supervised object localization (WSOL) task, there are still challenges to identify the entire body of an object, rather than only discriminative parts. In this paper, we propose a novel residual fine-grained attention (RFGA) module that autonomously excites the less activated regions of an object by utilizing information distributed over channels and locations within feature maps in combination with a residual operation. To be specific, we devise a series of mechanisms of triple-view attention representation, attention expansion, and feature calibration. Unlike other attention-based WSOL methods that learn a coarse attention map, having the same values across elements in feature maps, our proposed RFGA learns fine-grained values in an attention map by assigning different attention values for each of the elements. We validated the superiority of our proposed RFGA module by comparing it with the recent methods in the literature over three datasets. Further, we analyzed the effect of each mechanism in our RFGA and visualized attention maps to get insights.



rate research

Read More

156 - Tao Hu , Jizheng Xu , Cong Huang 2018
For fine-grained visual classification, objects usually share similar geometric structure but present variant local appearance and different pose. Therefore, localizing and extracting discriminative local features play a crucial role in accurate category prediction. Existing works either pay attention to limited object parts or train isolated networks for locating and classification. In this paper, we propose Weakly Supervised Bilinear Attention Network (WS-BAN) to solve these issues. It jointly generates a set of attention maps (region-of-interest maps) to indicate the locations of objects parts and extracts sequential part features by Bilinear Attention Pooling (BAP). Besides, we propose attention regularization and attention dropout to weakly supervise the generating process of attention maps. WS-BAN can be trained end-to-end and achieves the state-of-the-art performance on multiple fine-grained classification datasets, including CUB-200-2011, Stanford Car and FGVC-Aircraft, which demonstrated its effectiveness.
Weakly Supervised Object Localization (WSOL) techniques learn the object location only using image-level labels, without location annotations. A common limitation for these techniques is that they cover only the most discriminative part of the object, not the entire object. To address this problem, we propose an Attention-based Dropout Layer (ADL), which utilizes the self-attention mechanism to process the feature maps of the model. The proposed method is composed of two key components: 1) hiding the most discriminative part from the model for capturing the integral extent of object, and 2) highlighting the informative region for improving the recognition power of the model. Based on extensive experiments, we demonstrate that the proposed method is effective to improve the accuracy of WSOL, achieving a new state-of-the-art localization accuracy in CUB-200-2011 dataset. We also show that the proposed method is much more efficient in terms of both parameter and computation overheads than existing techniques.
The research on recognizing the most discriminative regions provides referential information for weakly supervised object localization with only image-level annotations. However, the most discriminative regions usually conceal the other parts of the object, thereby impeding entire object recognition and localization. To tackle this problem, the Dual-attention Focused Module (DFM) is proposed to enhance object localization performance. Specifically, we present a dual attention module for information fusion, consisting of a position branch and a channel one. In each branch, the input feature map is deduced into an enhancement map and a mask map, thereby highlighting the most discriminative parts or hiding them. For the position mask map, we introduce a focused matrix to enhance it, which utilizes the principle that the pixels of an object are continuous. Between these two branches, the enhancement map is integrated with the mask map, aiming at partially compensating the lost information and diversifies the features. With the dual-attention module and focused matrix, the entire object region could be precisely recognized with implicit information. We demonstrate outperforming results of DFM in experiments. In particular, DFM achieves state-of-the-art performance in localization accuracy in ILSVRC 2016 and CUB-200-2011.
Fine-grained image classification is to recognize hundreds of subcategories in each basic-level category. Existing methods employ discriminative localization to find the key distinctions among subcategories. However, they generally have two limitations: (1) Discriminative localization relies on region proposal methods to hypothesize the locations of discriminative regions, which are time-consuming. (2) The training of discriminative localization depends on object or part annotations, which are heavily labor-consuming. It is highly challenging to address the two key limitations simultaneously, and existing methods only focus on one of them. Therefore, we propose a weakly supervised discriminative localization approach (WSDL) for fast fine-grained image classification to address the two limitations at the same time, and its main advantages are: (1) n-pathway end-to-end discriminative localization network is designed to improve classification speed, which simultaneously localizes multiple different discriminative regions for one image to boost classification accuracy, and shares full-image convolutional features generated by region proposal network to accelerate the process of generating region proposals as well as reduce the computation of convolutional operation. (2) Multi-level attention guided localization learning is proposed to localize discriminative regions with different focuses automatically, without using object and part annotations, avoiding the labor consumption. Different level attentions focus on different characteristics of the image, which are complementary and boost the classification accuracy. Both are jointly employed to simultaneously improve classification speed and eliminate dependence on object and part annotations. Compared with state-of-the-art methods on 2 widely-used fine-grained image classification datasets, our WSDL approach achieves the best performance.
Classifying the sub-categories of an object from the same super-category (e.g. bird species, car and aircraft models) in fine-grained visual classification (FGVC) highly relies on discriminative feature representation and accurate region localization. Existing approaches mainly focus on distilling information from high-level features. In this paper, however, we show that by integrating low-level information (e.g. color, edge junctions, texture patterns), performance can be improved with enhanced feature representation and accurately located discriminative regions. Our solution, named Attention Pyramid Convolutional Neural Network (AP-CNN), consists of a) a pyramidal hierarchy structure with a top-down feature pathway and a bottom-up attention pathway, and hence learns both high-level semantic and low-level detailed feature representation, and b) an ROI guided refinement strategy with ROI guided dropblock and ROI guided zoom-in, which refines features with discriminative local regions enhanced and background noises eliminated. The proposed AP-CNN can be trained end-to-end, without the need of additional bounding box/part annotations. Extensive experiments on three commonly used FGVC datasets (CUB-200-2011, Stanford Cars, and FGVC-Aircraft) demonstrate that our approach can achieve state-of-the-art performance. Code available at url{http://dwz1.cc/ci8so8a}

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا