Do you want to publish a course? Click here

BCNet: Searching for Network Width with Bilaterally Coupled Network

67   0   0.0 ( 0 )
 Added by Shan You
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Searching for a more compact network width recently serves as an effective way of channel pruning for the deployment of convolutional neural networks (CNNs) under hardware constraints. To fulfill the searching, a one-shot supernet is usually leveraged to efficiently evaluate the performance wrt~different network widths. However, current methods mainly follow a textit{unilaterally augmented} (UA) principle for the evaluation of each width, which induces the training unfairness of channels in supernet. In this paper, we introduce a new supernet called Bilaterally Coupled Network (BCNet) to address this issue. In BCNet, each channel is fairly trained and responsible for the same amount of network widths, thus each network width can be evaluated more accurately. Besides, we leverage a stochastic complementary strategy for training the BCNet, and propose a prior initial population sampling method to boost the performance of the evolutionary search. Extensive experiments on benchmark CIFAR-10 and ImageNet datasets indicate that our method can achieve state-of-the-art or competing performance over other baseline methods. Moreover, our method turns out to further boost the performance of NAS models by refining their network widths. For example, with the same FLOPs budget, our obtained EfficientNet-B0 achieves 77.36% Top-1 accuracy on ImageNet dataset, surpassing the performance of original setting by 0.48%.



rate research

Read More

109 - Xiu Su , Shan You , Tao Huang 2021
Searching for network width is an effective way to slim deep neural networks with hardware budgets. With this aim, a one-shot supernet is usually leveraged as a performance evaluator to rank the performance wrt~different width. Nevertheless, current methods mainly follow a manually fixed weight sharing pattern, which is limited to distinguish the performance gap of different width. In this paper, to better evaluate each width, we propose a locally free weight sharing strategy (CafeNet) accordingly. In CafeNet, weights are more freely shared, and each width is jointly indicated by its base channels and free channels, where free channels are supposed to loCAte FrEely in a local zone to better represent each width. Besides, we propose to further reduce the search space by leveraging our introduced FLOPs-sensitive bins. As a result, our CafeNet can be trained stochastically and get optimized within a min-min strategy. Extensive experiments on ImageNet, CIFAR-10, CelebA and MS COCO dataset have verified our superiority comparing to other state-of-the-art baselines. For example, our method can further boost the benchmark NAS network EfficientNet-B0 by 0.41% via searching its width more delicately.
Breast cancer has become one of the most prevalent cancers by which people all over the world are affected and is posed serious threats to human beings, in a particular woman. In order to provide effective treatment or prevention of this cancer, disease diagnosis in the early stages would be of high importance. There have been various methods to detect this disorder in which using images have to play a dominant role. Deep learning has been recently adopted widely in different areas of science, especially medicine. In breast cancer detection problems, some diverse deep learning techniques have been developed on different datasets and resulted in good accuracy. In this article, we aimed to present a deep neural network model to classify histopathological images from the Databiox image dataset as the first application on this image database. Our proposed model named BCNet has taken advantage of the transfer learning approach in which VGG16 is selected from available pertained models as a feature extractor. Furthermore, to address the problem of insufficient data, we employed the data augmentation technique to expand the input dataset. All implementations in this research, ranging from pre-processing actions to depicting the diagram of the model architecture, have been carried out using tf.keras API. As a consequence of the proposed model execution, the significant validation accuracy of 88% and evaluation accuracy of 72% obtained.
Neural architecture search (NAS) approaches aim at automatically finding novel CNN architectures that fit computational constraints while maintaining a good performance on the target platform. We introduce a novel efficient one-shot NAS approach to optimally search for channel numbers, given latency constraints on a specific hardware. We first show that we can use a black-box approach to estimate a realistic latency model for a specific inference platform, without the need for low-level access to the inference computation. Then, we design a pairwise MRF to score any channel configuration and use dynamic programming to efficiently decode the best performing configuration, yielding an optimal solution for the network width search. Finally, we propose an adaptive channel configuration sampling scheme to gradually specialize the training phase to the target computational constraints. Experiments on ImageNet classification show that our approach can find networks fitting the resource constraints on different target platforms while improving accuracy over the state-of-the-art efficient networks.
128 - Qigong Sun , Xiufang Li , Yan Ren 2021
As an effective technique to achieve the implementation of deep neural networks in edge devices, model quantization has been successfully applied in many practical applications. No matter the methods of quantization aware training (QAT) or post-training quantization (PTQ), they all depend on the target bit-widths. When the precision of quantization is adjusted, it is necessary to fine-tune the quantized model or minimize the quantization noise, which brings inconvenience in practical applications. In this work, we propose a method to train a model for all quantization that supports diverse bit-widths (e.g., form 8-bit to 1-bit) to satisfy the online quantization bit-width adjustment. It is hot-swappable that can provide specific quantization strategies for different candidates through multiscale quantization. We use wavelet decomposition and reconstruction to increase the diversity of weights, thus significantly improving the performance of each quantization candidate, especially at ultra-low bit-widths (e.g., 3-bit, 2-bit, and 1-bit). Experimental results on ImageNet and COCO show that our method can achieve accuracy comparable performance to dedicated models trained at the same precision.
Recently, many plug-and-play self-attention modules are proposed to enhance the model generalization by exploiting the internal information of deep convolutional neural networks (CNNs). Previous works lay an emphasis on the design of attention module for specific functionality, e.g., light-weighted or task-oriented attention. However, they ignore the importance of where to plug in the attention module since they connect the modules individually with each block of the entire CNN backbone for granted, leading to incremental computational cost and number of parameters with the growth of network depth. Thus, we propose a framework called Efficient Attention Network (EAN) to improve the efficiency for the existing attention modules. In EAN, we leverage the sharing mechanism (Huang et al. 2020) to share the attention module within the backbone and search where to connect the shared attention module via reinforcement learning. Finally, we obtain the attention network with sparse connections between the backbone and modules, while (1) maintaining accuracy (2) reducing extra parameter increment and (3) accelerating inference. Extensive experiments on widely-used benchmarks and popular attention networks show the effectiveness of EAN. Furthermore, we empirically illustrate that our EAN has the capacity of transferring to other tasks and capturing the informative features. The code is available at https://github.com/gbup-group/EAN-efficient-attention-network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا