Do you want to publish a course? Click here

One Model for All Quantization: A Quantized Network Supporting Hot-Swap Bit-Width Adjustment

129   0   0.0 ( 0 )
 Added by Qigong Sun
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As an effective technique to achieve the implementation of deep neural networks in edge devices, model quantization has been successfully applied in many practical applications. No matter the methods of quantization aware training (QAT) or post-training quantization (PTQ), they all depend on the target bit-widths. When the precision of quantization is adjusted, it is necessary to fine-tune the quantized model or minimize the quantization noise, which brings inconvenience in practical applications. In this work, we propose a method to train a model for all quantization that supports diverse bit-widths (e.g., form 8-bit to 1-bit) to satisfy the online quantization bit-width adjustment. It is hot-swappable that can provide specific quantization strategies for different candidates through multiscale quantization. We use wavelet decomposition and reconstruction to increase the diversity of weights, thus significantly improving the performance of each quantization candidate, especially at ultra-low bit-widths (e.g., 3-bit, 2-bit, and 1-bit). Experimental results on ImageNet and COCO show that our method can achieve accuracy comparable performance to dedicated models trained at the same precision.



rate research

Read More

Neural network quantization methods often involve simulating the quantization process during training, making the trained model highly dependent on the target bit-width and precise way quantization is performed. Robust quantization offers an alternative approach with improved tolerance to different classes of data-types and quantization policies. It opens up new exciting applications where the quantization process is not static and can vary to meet different circumstances and implementations. To address this issue, we propose a method that provides intrinsic robustness to the model against a broad range of quantization processes. Our method is motivated by theoretical arguments and enables us to store a single generic model capable of operating at various bit-widths and quantization policies. We validate our methods effectiveness on different ImageNet models.
Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged for their deployments to resource-limited devices. Although recent studies have successfully discretized a full-precision network, they still incur large quantization errors after training, thus giving rise to a significant performance gap between a full-precision network and its quantized counterpart. In this work, we propose a novel quantization method for neural networks, Cluster-Promoting Quantization (CPQ) that finds the optimal quantization grids while naturally encouraging the underlying full-precision weights to gather around those quantization grids cohesively during training. This property of CPQ is thanks to our two main ingredients that enable differentiable quantization: i) the use of the categorical distribution designed by a specific probabilistic parametrization in the forward pass and ii) our proposed multi-class straight-through estimator (STE) in the backward pass. Since our second component, multi-class STE, is intrinsically biased, we additionally propose a new bit-drop technique, DropBits, that revises the standard dropout regularization to randomly drop bits instead of neurons. As a natural extension of DropBits, we further introduce the way of learning heterogeneous quantization levels to find proper bit-length for each layer by imposing an additional regularization on DropBits. We experimentally validate our method on various benchmark datasets and network architectures, and also support a new hypothesis for quantization: learning heterogeneous quantization levels outperforms the case using the same but fixed quantization levels from scratch.
This paper proposes a novel deep learning-based error correction coding scheme for AWGN channels under the constraint of one-bit quantization in the receivers. Specifically, it is first shown that the optimum error correction code that minimizes the probability of bit error can be obtained by perfectly training a special autoencoder, in which perfectly refers to converging the global minima. However, perfect training is not possible in most cases. To approach the performance of a perfectly trained autoencoder with a suboptimum training, we propose utilizing turbo codes as an implicit regularization, i.e., using a concatenation of a turbo code and an autoencoder. It is empirically shown that this design gives nearly the same performance as to the hypothetically perfectly trained autoencoder, and we also provide a theoretical proof of why that is so. The proposed coding method is as bandwidth efficient as the integrated (outer) turbo code, since the autoencoder exploits the excess bandwidth from pulse shaping and packs signals more intelligently thanks to sparsity in neural networks. Our results show that the proposed coding scheme at finite block lengths outperforms conventional turbo codes even for QPSK modulation. Furthermore, the proposed coding method can make one-bit quantization operational even for 16-QAM.
We investigate the compression of deep neural networks by quantizing their weights and activations into multiple binary bases, known as multi-bit networks (MBNs), which accelerate the inference and reduce the storage for the deployment on low-resource mobile and embedded platforms. We propose Adaptive Loss-aware Quantization (ALQ), a new MBN quantization pipeline that is able to achieve an average bitwidth below one-bit without notable loss in inference accuracy. Unlike previous MBN quantization solutions that train a quantizer by minimizing the error to reconstruct full precision weights, ALQ directly minimizes the quantization-induced error on the loss function involving neither gradient approximation nor full precision maintenance. ALQ also exploits strategies including adaptive bitwidth, smooth bitwidth reduction, and iterative trained quantization to allow a smaller network size without loss in accuracy. Experiment results on popular image datasets show that ALQ outperforms state-of-the-art compressed networks in terms of both storage and accuracy. Code is available at https://github.com/zqu1992/ALQ
101 - Kuniaki Saito , Kate Saenko 2021
Universal Domain Adaptation (UNDA) aims to handle both domain-shift and category-shift between two datasets, where the main challenge is to transfer knowledge while rejecting unknown classes which are absent in the labeled source data but present in the unlabeled target data. Existing methods manually set a threshold to reject unknown samples based on validation or a pre-defined ratio of unknown samples, but this strategy is not practical. In this paper, we propose a method to learn the threshold using source samples and to adapt it to the target domain. Our idea is that a minimum inter-class distance in the source domain should be a good threshold to decide between known or unknown in the target. To learn the inter-and intra-class distance, we propose to train a one-vs-all classifier for each class using labeled source data. Then, we adapt the open-set classifier to the target domain by minimizing class entropy. The resulting framework is the simplest of all baselines of UNDA and is insensitive to the value of a hyper-parameter yet outperforms baselines with a large margin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا