No Arabic abstract
With the rapid growth of Internet of Things (IoT) devices, the next generation mobile networks demand for more operating frequency bands. By leveraging the underutilized radio spectrum, the cognitive radio (CR) technology is considered as a promising solution for spectrum scarcity problem of IoT applications. In parallel with the development of CR techniques, Wireless Energy Harvesting (WEH) is considered as one of the emerging technologies to eliminate the need of recharging or replacing the batteries for IoT and CR networks. To this end, we propose to utilize WEH for CR networks in which the CR devices are not only capable of sensing the available radio frequencies in a collaborative manner but also harvesting the wireless energy transferred by an Access Point (AP). More importantly, we design an optimization framework that captures a fundamental tradeoff between energy efficiency (EE) and spectral efficiency (SE) of the network. In particular, we formulate a Mixed Integer Nonlinear Programming (MINLP) problem that maximizes EE while taking into consideration of users buffer occupancy, data rate fairness, energy causality constraints and interference constraints. We further prove that the proposed optimization framework is an NP-Hard problem. Thus, we propose a low complex heuristic algorithm, called INSTANT, to solve the resource allocation and energy harvesting optimization problem. The proposed algorithm is shown to be capable of achieving near optimal solution with high accuracy while having polynomial complexity. The efficiency of our proposal is validated through well designed simulations.
In this paper, we propose a novel joint intelligent trajectory design and resource allocation algorithm based on users mobility and their requested services for unmanned aerial vehicles (UAVs) assisted networks, where UAVs act as nodes of a network function virtualization (NFV) enabled network. Our objective is to maximize energy efficiency and minimize the average delay on all services by allocating the limited radio and NFV resources. In addition, due to the traffic conditions and mobility of users, we let some Virtual Network Functions (VNFs) to migrate from their current locations to other locations to satisfy the Quality of Service requirements. We formulate our problem to find near-optimal locations of UAVs, transmit power, subcarrier assignment, placement, and scheduling the requested services functions over the UAVs and perform suitable VNF migration. Then we propose a novel Hierarchical Hybrid Continuous and Discrete Action (HHCDA) deep reinforcement learning method to solve our problem. Finally, the convergence and computational complexity of the proposed algorithm and its performance analyzed for different parameters. Simulation results show that our proposed HHCDA method decreases the request reject rate and average delay by 31.5% and 20% and increases the energy efficiency by 40% compared to DDPG method.
The combination of non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) can significantly improve the spectrum efficiency beyond the fifth-generation network. In this paper, we mainly focus on energy-efficient resource allocation for a multi-user, multi-BS NOMA assisted MEC network with imperfect channel state information (CSI), in which each user can upload its tasks to multiple base stations (BSs) for remote executions. To minimize the energy consumption, we consider jointly optimizing the task assignment, power allocation and user association. As the main contribution, with imperfect CSI, the optimal closed-form expressions of task assignment and power allocation are analytically derived for the two-BS case. Specifically, the original formulated problem is nonconvex. We first transform the probabilistic problem into a non-probabilistic one. Subsequently, a bilevel programming method is proposed to derive the optimal solution. In addition, by incorporating the matching algorithm with the optimal task and power allocation, we propose a low complexity algorithm to efficiently optimize user association for the multi-user and multi-BS case. Simulations demonstrate that the proposed algorithm can yield much better performance than the conventional OMA scheme but also the identical results with lower complexity from the exhaustive search with the small number of BSs.
Mobile edge computing (MEC)-enabled Internet of Things (IoT) networks have been deemed a promising paradigm to support massive energy-constrained and computation-limited IoT devices. IoT with mobility has found tremendous new services in the 5G era and the forthcoming 6G eras such as autonomous driving and vehicular communications. However, mobility of IoT devices has not been studied in the sufficient level in the existing works. In this paper, the offloading decision and resource allocation problem is studied with mobility consideration. The long-term average sum service cost of all the mobile IoT devices (MIDs) is minimized by jointly optimizing the CPU-cycle frequencies, the transmit power, and the user association vector of MIDs. An online mobility-aware offloading and resource allocation (OMORA) algorithm is proposed based on Lyapunov optimization and Semi-Definite Programming (SDP). Simulation results demonstrate that our proposed scheme can balance the system service cost and the delay performance, and outperforms other offloading benchmark methods in terms of the system service cost.
Non-orthogonal multiple access (NOMA) has attracted much recent attention owing to its capability for improving the system spectral efficiency in wireless communications. Deploying NOMA in heterogeneous network can satisfy users explosive data traffic requirements, and NOMA will likely play an important role in the fifth-generation (5G) mobile communication networks. However, NOMA brings new technical challenges on resource allocation due to the mutual cross-tier interference in heterogeneous networks. In this article, to study the tradeoff between data rate performance and energy consumption in NOMA, we examine the problem of energy-efficient user scheduling and power optimization in 5G NOMA heterogeneous networks. The energy-efficient user scheduling and power allocation schemes are introduced for the downlink 5G NOMA heterogeneous network for perfect and imperfect channel state information (CSI) respectively. Simulation results show that the resource allocation schemes can significantly increase the energy efficiency of 5G NOMA heterogeneous network for both cases of perfect CSI and imperfect CSI.
This article investigates the energy efficiency issue in non-orthogonal multiple access (NOMA)-enhanced Internet-of-Things (IoT) networks, where a mobile unmanned aerial vehicle (UAV) is exploited as a flying base station to collect data from ground devices via the NOMA protocol. With the aim of maximizing network energy efficiency, we formulate a joint problem of UAV deployment, device scheduling and resource allocation. First, we formulate the joint device scheduling and spectrum allocation problem as a three-sided matching problem, and propose a novel low-complexity near-optimal algorithm. We also introduce the novel concept of `exploration into the matching game for further performance improvement. By algorithm analysis, we prove the convergence and stability of the final matching state. Second, in an effort to allocate proper transmit power to IoT devices, we adopt the Dinkelbachs algorithm to obtain the optimal power allocation solution. Furthermore, we provide a simple but effective approach based on disk covering problem to determine the optimal number and locations of UAVs stop points to ensure that all IoT devices can be fully covered by the UAV via line-of-sight (LoS) links for the sake of better channel condition. Numerical results unveil that: i) the proposed joint UAV deployment, device scheduling and resource allocation scheme achieves much higher EE compared to predefined stationary UAV deployment case and fixed power allocation scheme, with acceptable complexity; and ii) the UAV-aided IoT networks with NOMA greatly outperforms the OMA case in terms of number of accessed devices.