Do you want to publish a course? Click here

The Detectability of Nightside City Lights on Exoplanets

98   0   0.0 ( 0 )
 Added by Thomas Beatty
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Next-generation missions designed to detect biosignatures on exoplanets will also be capable of placing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplanets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earths atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earths value of 0.05%, up to the limiting case of an ecumenopolis -- or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of $gtrsim10%$. The known planet Proxima b is a particularly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century. An ecumenopolis, or planet-wide city, would be detectable around roughly 50 nearby stars by both LUVOIR and HabEx, and a survey of these systems would place a $1,sigma$ upper limit of $lesssim2%$ on the frequency of ecumenopolis planets in the Solar neighborhood assuming no detections.



rate research

Read More

The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wavelengths from 2 - 4 microns is revealed. Jupiters reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 microns. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiters atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 microns, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month.
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with $3sigma$ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a $3sigma$ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
Hazes are common in known planet atmospheres, and geochemical evidence suggests early Earth occasionally supported an organic haze with significant environmental and spectral consequences. The UV spectrum of the parent star drives organic haze formation through methane photochemistry. We use a 1D photochemical-climate model to examine production of fractal organic haze on Archean Earth-analogs in the habitable zonesof several stellar types: the modern and early Sun, AD Leo (M3.5V), GJ 876 (M4V), $epsilon$ Eridani (K2V), and $sigma$ Bootis (F2V). For Archean-like atmospheres, planets orbiting stars with the highest UV fluxes do not form haze due to the formation of photochemical oxygen radicals that destroy haze precursors. Organic hazes impact planetary habitability via UV shielding and surface cooling, but this cooling is minimized around M dwarfs whose energy is emitted at wavelengths where organic hazes are relatively transparent. We generate spectra to test the detectability of haze. For 10 transits of a planet orbiting GJ 876 observed by the James Webb Space Telescope, haze makes gaseous absorption features at wavelengths $<$ 2.5 $mu$m 2-10$sigma$ shallower compared to a haze-free planet, and methane and carbon dioxide are detectable at $>$5$sigma$. A haze absorption feature can be detected at 5$sigma$ near 6.3 $mu$m, but higher signal-to-noise is needed to distinguish haze from adjacent absorbers. For direct imaging of a planet at 10 parsecs using a coronagraphic 10-meter class ultraviolet-visible-near infrared telescope, a UV-blue haze absorption feature would be strongly detectable at $>$12$sigma$ in 200 hours.
Terrestrial extrasolar planets around low-mass stars are prime targets when searching for atmospheric biosignatures with current and near-future telescopes. The habitable-zone Super-Earth LHS 1140 b could hold a hydrogen-dominated atmosphere and is an excellent candidate for detecting atmospheric features. In this study, we investigate how the instellation and planetary parameters influence the atmospheric climate, chemistry, and spectral appearance of LHS 1140 b. We study the detectability of selected molecules, in particular potential biosignatures, with the upcoming James Webb Space Telescope (JWST) and Extremely Large Telescope (ELT). In a first step we use the coupled climate-chemistry model, 1D-TERRA, to simulate a range of assumed atmospheric chemical compositions dominated by H$_2$ and CO$_2$. Further, we vary the concentrations of CH$_4$ by several orders of magnitude. In a second step we calculate transmission spectra of the simulated atmospheres and compare them to recent transit observations. Finally, we determine the observation time required to detect spectral bands with low resolution spectroscopy using JWST and the cross-correlation technique using ELT. In H$_2$-dominated and CH$_4$-rich atmospheres O$_2$ has strong chemical sinks, leading to low concentrations of O$_2$ and O$_3$. The potential biosignatures NH$_3$, PH$_3$, CH$_3$Cl and N$_2$O are less sensitive to the concentration of H$_2$, CO$_2$ and CH$_4$ in the atmosphere. In the simulated H$_2$-dominated atmosphere the detection of these gases might be feasible within 20 to 100 observation hours with ELT or JWST, when assuming weak extinction by hazes. If further observations of LHS 1140 b suggest a thin, clear, hydrogen-dominated atmosphere, the planet would be one of the best known targets to detect biosignature gases in the atmosphere of a habitable-zone rocky exoplanet with upcoming telescopes.
Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple $alpha$ disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. $lambdalesssim$ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has $alphalesssim 0.001$, ALMA can detect this disc when it accretes faster than $10^{-10} M_{odot}/yr$. ALMA can also detect the minimum mass sub-nebulae disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 10$^2$-10$^{3}$ years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا