Do you want to publish a course? Click here

On the Radio Detectability of Circumplanetary Discs

507   0   0.0 ( 0 )
 Added by Zhaohuan Zhu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple $alpha$ disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. $lambdalesssim$ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has $alphalesssim 0.001$, ALMA can detect this disc when it accretes faster than $10^{-10} M_{odot}/yr$. ALMA can also detect the minimum mass sub-nebulae disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 10$^2$-10$^{3}$ years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).



rate research

Read More

We investigated the formation and evolution of satellite systems in a cold, extended circumplanetary disc around a 10 $M_{rm{Jupiter}}$ gas giant which was formed by gravitational instability at 50,AU from its star. The disc parameters were from a 3D global SPH simulation. We used a population synthesis approach, where we placed satellite embryos in this disc, and let them accrete mass, migrate, collide until the gaseous disc is dissipated. In each run we changed the initial dust-to-gas ratio, dispersion- and refilling time-scales within reasonable limits, as well as the number of embryos and their starting locations. We found that most satellites have mass similar to the Galilean ones, but very few can reach a maximum of 3 $M_{rm{Earth}}$ due to the massive circumplanetary disc. Large moons are often form as far as 0.5 $R_{rm{disc}}$. The migration rate of satellites are fast, hence during the disc lifetime, an average of 10 $M_{rm{Earth}}$ worth of moons will be engulfed by the planet, increasing greatly its metallicity. We also investigated the effect of the planets semi-major axis on the resulting satellite systems by re-scaling our model. This test revealed that for the discs closer to the star, the formed moons are lighter, and a larger amount of satellites are lost into the planet due to the even faster migration. Finally, we checked the probability of detecting satellites like our population, which resulted in a low number of $leq$ 3% even with upcoming powerful telescopes like E-ELT.
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with $3sigma$ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a $3sigma$ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
67 - J. Szulagyi , F. Masset , E. Lega 2016
We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80%$ of Jupiters diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planets location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.
Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.
Two planetary mass objects in the far outer Solar System --- collectively referred to here as Planet X --- have recently been hypothesized to explain the orbital distribution of distant Kuiper Belt Objects. Neither planet is thought to be exceptionally faint, but the sky locations of these putative planets are poorly constrained. Therefore, a wide area survey is needed to detect these possible planets. The Large Synoptic Survey Telescope (LSST) will carry out an unbiased, large area (around 18,000 deg$^2$), deep (limiting magnitude of individual frames of 24.5) survey (the wide-fast-deep survey) of the southern sky beginning in 2022, and is therefore an important tool to search for these hypothesized planets. Here we explore the effectiveness of LSST as a search platform for these possible planets. Assuming the current baseline cadence (which includes the wide-fast-deep survey plus additional coverage) we estimate that LSST will confidently detect or rule out the existence of Planet X in 61% of the entire sky. At orbital distances up to $sim$75 au, Planet X could simply be found in the normal nightly moving object processing; at larger distances, it will require custom data processing. We also discuss the implications of a non-detection of Planet X in LSST data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا