Do you want to publish a course? Click here

Detectability of Planetesimal Impacts on Giant Exoplanets

98   0   0.0 ( 0 )
 Added by Laura Flagg
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wavelengths from 2 - 4 microns is revealed. Jupiters reflected light spectrum in the near-infrared is dominated by its methane opacity including a deep band at 2.3 microns. After the impact, sunlight that would have normally been absorbed by the large amount of methane in Jupiters atmosphere was instead reflected by the cometary material from the impacts. As a result, at 2.3 microns, where the planet would normally have low reflectivity, it brightened substantially and stayed brighter for at least a month.



rate research

Read More

97 - Thomas G. Beatty 2021
Next-generation missions designed to detect biosignatures on exoplanets will also be capable of placing constraints on the presence of technosignatures (evidence for technological life) on these same worlds. Here, I estimate the detectability of nightside city lights on habitable, Earth-like, exoplanets around nearby stars using direct-imaging observations from the proposed LUVOIR and HabEx observatories. I use data from the Soumi National Polar-orbiting Partnership satellite to determine the surface flux from city lights at the top of Earths atmosphere, and the spectra of commercially available high-power lamps to model the spectral energy distribution of the city lights. I consider how the detectability scales with urbanization fraction: from Earths value of 0.05%, up to the limiting case of an ecumenopolis -- or planet-wide city. I then calculate the minimum detectable urbanization fraction using 300 hours of observing time for generic Earth-analogs around stars within 8 pc of the Sun, and for nearby known potentially habitable planets. Though Earth itself would not be detectable by LUVOIR or HabEx, planets around M-dwarfs close to the Sun would show detectable signals from city lights for urbanization levels of 0.4% to 3%, while city lights on planets around nearby Sun-like stars would be detectable at urbanization levels of $gtrsim10%$. The known planet Proxima b is a particularly compelling target for LUVOIR A observations, which would be able to detect city lights twelve times that of Earth in 300 hours, an urbanization level that is expected to occur on Earth around the mid-22nd-century. An ecumenopolis, or planet-wide city, would be detectable around roughly 50 nearby stars by both LUVOIR and HabEx, and a survey of these systems would place a $1,sigma$ upper limit of $lesssim2%$ on the frequency of ecumenopolis planets in the Solar neighborhood assuming no detections.
Like the magnetised planets in our Solar System, magnetised exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on the physical parameters of these features. Large comparative studies of predicted radio emission characteristics for the known population of exoplanets help to identify what physical parameters could be key for producing bright, observable radio emission. Since the last comparative study, many thousands of exoplanets have been discovered. We report new estimates for the radio flux densities and maximum emission frequencies for the current population of known exoplanets orbiting pre-main sequence and main-sequence stars with spectral types F-M. The set of exoplanets predicted to produce observable radio emission are Hot Jupiters orbiting young stars. The youth of these system predicts strong stellar magnetic fields and/or dense winds, which are key for producing bright, observable radio emission. We use a new all-sky circular polarisation Murchison Widefield Array survey to place sensitive limits on 200 MHz emission from exoplanets, with $3sigma$ values ranging from 4.0 - 45.0 mJy. Using a targeted Giant Metre Wave Radio Telescope observing campaign, we also report a $3sigma$ upper limit of 4.5 mJy on the radio emission from V830 Tau b, the first Hot Jupiter to be discovered orbiting a pre-main sequence star. Our limit is the first to be reported for the low-frequency radio emission from this source.
The origin of Mercurys high iron-to-rock ratio is still unknown. In this work we investigate Mercurys formation via giant impacts and consider the possibilities of a single giant impact, a hit-and-run, and multiple collisions in one theoretical framework. We study the standard collision parameters (impact velocity, mass ratio, impact parameter), along with the impactors composition and the cooling of the target. It is found that the impactors composition affects the iron distribution within the planet and the final mass of the target by up to 15%, although the resulting mean iron fraction is similar. We suggest that an efficient giant impact requires to be head-on with high velocities, while in the hit-and-run case the impact can occur closer to the most probable collision angle (45$^{circ}$). It is also shown that Mercurys current iron-to-rock ratio can be a result of multiple-collisions, with their exact number depending on the collision parameters. Mass loss is found to be more significant when the collisions are tight in time.
Observations of exoplanetary spectra are leading to unprecedented constraints on their atmospheric elemental abundances, particularly O/H, C/H, and C/O ratios. Recent studies suggest that elemental ratios could provide important constraints on formation and migration mechanisms of giant exoplanets. A fundamental assumption in such studies is that the chemical composition of the planetary envelope represents the sum-total of compositions of the accreted gas and solids during the formation history of the planet. We investigate the efficiency with which accreted planetesimals ablate in a giant planetary envelope thereby contributing to its composition rather than sinking to the core. From considerations of aerodynamic drag causing `frictional ablation and the envelope temperature structure causing `thermal ablation, we compute mass ablations for impacting planetesimals of radii 30 m to 1 km for different compositions (ice to iron) and a wide range of velocities and impact angles, assuming spherical symmetry. Icy impactors are fully ablated in the outer envelope for a wide range of parameters. Even for Fe impactors substantial ablation occurs in the envelope for a wide range of sizes and velocities. For example, iron impactors of sizes below ~0.5 km and velocities above ~30 km/s are found to ablate by ~60-80% within the outer envelope at pressures below 10^3 bar due to frictional ablation alone. For deeper pressures (~10^7 bar), substantial ablation happens over a wider range of parameters. Therefore, our exploratory study suggests that atmospheric abundances of volatile elements in giant planets reflect their accretion history during formation.
Forming gas giant planets by the accretion of 100 km diameter planetesimals, a typical size that results from self-gravity assisted planetesimal formation, is often thought to be inefficient. Many models therefore use small km-sized planetesimals, or invoke the accretion of pebbles. Furthermore, models based on planetesimal accretion often use the ad hoc assumption of planetesimals distributed radially in a minimum mass solar nebula fashion. We wish to investigate the impact of various initial radial density distributions in planetesimals with a dynamical model for the formation of planetesimals on the resulting population of planets. In doing so, we highlight the directive role of the early stages of dust evolution into pebbles and planetesimals in the circumstellar disk on the following planetary formation. We have implemented a two population model for solid evolution and a pebble flux regulated model for planetesimal formation into our global model for planet population synthesis. This framework is used to study the global effect of planetesimal formation on planet formation. As reference, we compare our dynamically formed planetesimal surface densities with ad-hoc set distributions of different radial density slopes of planetesimals. Even though required, it is not solely the total planetesimal disk mass, but the planetesimal surface density slope and subsequently the formation mechanism of planetesimals, that enables planetary growth via planetesimal accretion. Highly condensed regions of only 100 km sized planetesimals in the inner regions of circumstellar disks can lead to gas giant growth. Pebble flux regulated planetesimal formation strongly boosts planet formation, because it is a highly effective mechanism to create a steep planetesimal density profile. We find this to lead to the formation of giant planets inside 1 au by 100 km already by pure planetesimal accretion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا