Do you want to publish a course? Click here

Free limits of free algebras

105   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Consider a diagram $cdots to F_3 to F_2to F_1$ of algebraic systems, where $F_n$ denotes the free object on $n$ generators and the connecting maps send the extra generator to some distinguished trivial element. We prove that (a) if the $F_i$ are free associative algebras over a fixed field then the limit in the category of graded algebras is again free on a set of homogeneous generators; (b) on the other hand, the limit in the category of associative (ungraded) algebras is a free formal power series algebra on a set of homogeneous elements, and (c) if the $F_i$ are free Lie algebras then the limit in the category of graded Lie algebras is again free.



rate research

Read More

682 - Loic Foissy 2009
Let g be a free brace algebra. This structure implies that g is also a prelie algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that g is also a free prelie algebra, using a description of g with the help of planar rooted trees, a permutative product, and anipulations on the Poincare-Hilbert series of g.
253 - Frederic Chapoton 2007
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
Building on the foundations in our previous paper, we study Segal conditions that are given by finite products, determined by structures we call cartesian patterns. We set up Day convolution on presheaves in this setting and use it to give conditions under which there is a colimit formula for free algebras and other left adjoints. This specializes to give a simple proof of Luries results on operadic left Kan extensions and free algebras for symmetric $infty$-operads.
95 - Edward S. Letzter 2019
In 1992, following earlier conjectures of Lichtman and Makar-Limanov, Klein conjectured that a noncommutative domain must contain a free, multiplicative, noncyclic subsemigroup. He verified the conjecture when the center is uncountable. In this note we consider the existence (or not) of free subsemigroups in associative $k$-algebras $R$, where $k$ is a field not algebraic over a finite subfield. We show that $R$ contains a free noncyclic subsemigroup in the following cases: (1) $R$ satisfies a polynomial identity and is noncommutative modulo its prime radical. (2) $R$ has at least one nonartinian primitive subquotient. (3) $k$ is uncountable and $R$ is noncommutative modulo its Jacobson radical. In particular, (1) and (2) verify Kleins conjecture for numerous well known classes of domains, over countable fields, not covered in the prior literature.
In this paper, we first define the pre-Lie family algebra associated to a dendriform family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family algebra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled rooted trees, which generalizes the result of F. Chapoton and M. Livernet. In the end, we construct Zinbiel and pre-Poisson family algebras and generalize results of M. Aguiar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا