No Arabic abstract
Let g be a free brace algebra. This structure implies that g is also a prelie algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that g is also a free prelie algebra, using a description of g with the help of planar rooted trees, a permutative product, and anipulations on the Poincare-Hilbert series of g.
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.
Consider a diagram $cdots to F_3 to F_2to F_1$ of algebraic systems, where $F_n$ denotes the free object on $n$ generators and the connecting maps send the extra generator to some distinguished trivial element. We prove that (a) if the $F_i$ are free associative algebras over a fixed field then the limit in the category of graded algebras is again free on a set of homogeneous generators; (b) on the other hand, the limit in the category of associative (ungraded) algebras is a free formal power series algebra on a set of homogeneous elements, and (c) if the $F_i$ are free Lie algebras then the limit in the category of graded Lie algebras is again free.
In this paper, we first define the pre-Lie family algebra associated to a dendriform family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family algebra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled rooted trees, which generalizes the result of F. Chapoton and M. Livernet. In the end, we construct Zinbiel and pre-Poisson family algebras and generalize results of M. Aguiar.
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.
Let G be a finite group, (g_{1},...,g_{r}) an (unordered) r-tuple of G^{(r)} and x_{i,g_i}s variables that correspond to the g_is, i=1,...,r. Let F<x_{1,g_1},...,x_{r,g_r}> be the corresponding free G-graded algebra where F is a field of zero characteristic. Here the degree of a monomial is determined by the product of the indices in G. Let I be a G-graded T-ideal of F<x_{1,g_1},...,x_{r,g_r}> which is PI (e.g. any ideal of identities of a G-graded finite dimensional algebra is of this type). We prove that the Hilbert series of F<x_{1,g_1},...,x_{r,g_r}>/I is a rational function. More generally, we show that the Hilbert series which corresponds to any g-homogeneous component of F<x_{1,g_1},...,x_{r,g_r}>/I is a rational function.