No Arabic abstract
In 1992, following earlier conjectures of Lichtman and Makar-Limanov, Klein conjectured that a noncommutative domain must contain a free, multiplicative, noncyclic subsemigroup. He verified the conjecture when the center is uncountable. In this note we consider the existence (or not) of free subsemigroups in associative $k$-algebras $R$, where $k$ is a field not algebraic over a finite subfield. We show that $R$ contains a free noncyclic subsemigroup in the following cases: (1) $R$ satisfies a polynomial identity and is noncommutative modulo its prime radical. (2) $R$ has at least one nonartinian primitive subquotient. (3) $k$ is uncountable and $R$ is noncommutative modulo its Jacobson radical. In particular, (1) and (2) verify Kleins conjecture for numerous well known classes of domains, over countable fields, not covered in the prior literature.
We show that the invariants of a free associative algebra of finite rank under a linear action of a finite-dimensional Hopf algebra generated by group-like and skew-primitive elements form a finitely generated algebra exactly when the action is scalar. This generalizes an analogous result for group actions by automorphisms obtained by Dicks and Formanek, and Kharchenko.
As an instance of a linear action of a Hopf algebra on a free associative algebra, we consider finite group gradings of a free algebra induced by gradings on the space spanned by the free generators. The homogeneous component corresponding to the identity of the group is a free subalgebra which is graded by the usual degree. We look into its Hilbert series and prove that it is a rational function by giving an explicit formula. As an application, we show that, under suitable conditions, this subalgebra is finitely generated if and only if the grading on the base vector space is trivial.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
We classify, up to isomorphism, the 2-dimensional algebras over a field K. We focuse also on the case of characteristic 2, identifying the matrices of GL(2,F_2) with the elements of the symmetric group S_3. The classification is then given by the study of the orbits of this group on a 3-dimensional plane, viewed as a Fano plane. As applications, we establish classifications of Jordan algebras, algebras of Lie type or Hom-Associative algebras.
We introduce the notion of weakly associative algebra and its relations with the notion of nonassociative Poisson algebras.