Do you want to publish a course? Click here

A Preponderance of Perpendicular Planets

421   0   0.0 ( 0 )
 Added by Simon Albrecht
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observing the Rossiter-McLaughlin effect during a planetary transit allows the determination of the angle $lambda$ between the sky projections of the stars spin axis and the planets orbital axis. Such observations have revealed a large population of well-aligned systems and a smaller population of misaligned systems, with values of $lambda$ ranging up to 180$^circ$. For a subset of 57 systems, we can now go beyond the sky projection and determine the 3-d obliquity $psi$ by combining the Rossiter-McLaughlin data with constraints on the line-of-sight inclination of the spin axis. Here we show that the misaligned systems do not span the full range of obliquities; they show a preference for nearly-perpendicular orbits ($psi=80-125^circ$) that seems unlikely to be a statistical fluke. If confirmed by further observations, this pile-up of polar orbits is a clue about the unknown processes of obliquity excitation and evolution.

rate research

Read More

High eccentricity tidal migration (HEM) is a promising channel for the origins of hot Jupiters and hot Neptunes. In the typical HEM scenario, a planet forms beyond the ice line, but alternatively a planet can disk migrate or form warm and undergo a short final stretch of HEM. At the warm origin point, general relavistic precession can reduce the amplitude of Kozai-Lidov oscillations driven by an outer companion. We show that warm planets that achieve HEM under these conditions -- and with common types of planetary and stellar companions -- tend to end up with near-polar spin-orbit alignments (psi = 50-130 degrees) instead of concentrated at 40 and 140 degrees. Thus short distance, GR-reduced HEM is a possible explanation for the observed population of perpendicular planets.
80 - Beibei Liu , Jianghui Ji 2020
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.
The frequency of planets in binaries is an important issue in the field of extrasolar planet studies because of its relevance in the estimation of the global planet population of our galaxy and the clues it can give to our understanding of planet formation and evolution. Multiple stars have often been excluded from exoplanet searches, especially those performed using the radial velocity technique, due to the technical challenges posed by such targets. As a consequence and despite recent efforts, our knowledge of the frequency of planets in multiple stellar systems is still rather incomplete. On the other hand, the lack of knowledge about the binarity at the time of the compilation of the target samples means that our estimate of the planet frequency around single stars could be tainted by the presence of unknown binaries, especially if these objects have a different behavior in terms of planet occurrence. In a previous work we investigated the binarity of the objects included in the Uniform Detectability sample defined by Fisher and Valenti (2005), showing how more than 20% of their targets were, in fact, not single stars. Here, we present an update of this census, made possible mainly by the information now available thanks to the second Gaia Data Release. The new binary sample includes a total of 313 systems, of which 114 were added through this work. We were also able to significantly improve the estimates of masses and orbital parameters for most of the pairs in the original list, especially those at close separations. A few new systems with white dwarf companions were also identified. The results of the new analysis are in good agreement with the findings of our previous work, confirming the lack of difference in the overall planet frequency between binaries and single stars but suggesting a decrease in the planet frequency for very close pairs.}
Exoplanetary science has reached a historic moment. The James Webb Space Telescope will be capable of probing the atmospheres of rocky planets, and perhaps even search for biologically produced gases. However this is contingent on identifying suitable targets before the end of the mission. A race therefore, is on, to find transiting planets with the most favorable properties, in time for the launch. Here, we describe a realistic opportunity to discover extremely favorable targets - rocky planets transiting nearby brown dwarfs - using the Spitzer Space Telescope as a survey instrument. Harnessing the continuous time coverage and the exquisite precision of Spitzer in a 5,400 hour campaign monitoring nearby brown dwarfs, we will detect a handful of planetary systems with planets as small as Mars. The survey we envision is a logical extension of the immense progress that has been realized in the field of exoplanets and a natural outcome of the exploration of the solar neighborhood to map where the nearest habitable rocky planets are located (as advocated by the 2010 Decadal Survey). Our program represents an essential step towards the atmospheric characterization of terrestrial planets and carries the compelling promise of studying the concept of habitability beyond Earth-like conditions. In addition, our photometric monitoring will provide invaluable observations of a large sample of nearby brown dwarfs situated close to the M/L transition. This is why, we also advocate an immediate public release of the survey data, to guarantee rapid progress on the planet search and provide a treasure trove of data for brown dwarf science.
It is widely assumed that a star and its protoplanetary disk are initially aligned, with the stellar equator parallel to the disk plane. When observations reveal a misalignment between stellar rotation and the orbital motion of a planet, the usual interpretation is that the initial alignment was upset by gravitational perturbations that took place after planet formation. Most of the previously known misalignments involve isolated hot Jupiters, for which planet-planet scattering or secular effects from a wider-orbiting planet are the leading explanations. In theory, star/disk misalignments can result from turbulence during star formation or the gravitational torque of a wide-orbiting companion star, but no definite examples of this scenario are known. An ideal example would combine a coplanar system of multiple planets -- ruling out planet-planet scattering or other disruptive post-formation events -- with a backward-rotating star, a condition that is easier to obtain from a primordial misalignment than from post-formation perturbations. There are two previously known examples of a misaligned star in a coplanar multi-planet system, but in neither case has a suitable companion star been identified, nor is the stellar rotation known to be retrograde. Here, we show that the star K2-290 A is tilted by $124pm 6$ degrees compared to the orbits of both of its known planets, and has a wide-orbiting stellar companion that is capable of having tilted the protoplanetary disk. The system provides the clearest demonstration that stars and protoplanetary disks can become grossly misaligned due to the gravitational torque from a neighbouring star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا