Do you want to publish a course? Click here

A backward-spinning star with two coplanar planets

272   0   0.0 ( 0 )
 Added by Simon Albrecht
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is widely assumed that a star and its protoplanetary disk are initially aligned, with the stellar equator parallel to the disk plane. When observations reveal a misalignment between stellar rotation and the orbital motion of a planet, the usual interpretation is that the initial alignment was upset by gravitational perturbations that took place after planet formation. Most of the previously known misalignments involve isolated hot Jupiters, for which planet-planet scattering or secular effects from a wider-orbiting planet are the leading explanations. In theory, star/disk misalignments can result from turbulence during star formation or the gravitational torque of a wide-orbiting companion star, but no definite examples of this scenario are known. An ideal example would combine a coplanar system of multiple planets -- ruling out planet-planet scattering or other disruptive post-formation events -- with a backward-rotating star, a condition that is easier to obtain from a primordial misalignment than from post-formation perturbations. There are two previously known examples of a misaligned star in a coplanar multi-planet system, but in neither case has a suitable companion star been identified, nor is the stellar rotation known to be retrograde. Here, we show that the star K2-290 A is tilted by $124pm 6$ degrees compared to the orbits of both of its known planets, and has a wide-orbiting stellar companion that is capable of having tilted the protoplanetary disk. The system provides the clearest demonstration that stars and protoplanetary disks can become grossly misaligned due to the gravitational torque from a neighbouring star.



rate research

Read More

We report the discovery of two super-Earth-sized planets transiting the bright (V = 8.94, K = 7.07) nearby late G-dwarf HD 3167, using data collected by the K2 mission. The inner planet, HD 3167 b, has a radius of 1.6 R_e and an ultra-short orbital period of only 0.96 days. The outer planet, HD 3167 c, has a radius of 2.9 R_e and orbits its host star every 29.85 days. At a distance of just 45.8 +/- 2.2 pc, HD 3167 is one of the closest and brightest stars hosting multiple transiting planets, making HD 3167 b and c well suited for follow-up observations. The star is chromospherically inactive with low rotational line-broadening, ideal for radial velocity observations to measure the planets masses. The outer planet is large enough that it likely has a thick gaseous envelope which could be studied via transmission spectroscopy. Planets transiting bright, nearby stars like HD 3167 are valuable objects to study leading up to the launch of the James Webb Space Telescope.
The bulk density of a planet, as measured by mass and radius, is a result of planet structure and composition. Relative proportions of iron core, rocky mantle, and gaseous envelopes are degenerate for a given density. This degeneracy is reduced for rocky planets without significant gaseous envelopes when the structure is assumed to be a differentiated iron core and rocky mantle, in which the core mass fraction (CMF) is a first-order description of a planets bulk composition. A rocky planets CMF may be derived both from bulk density and by assuming the planet reflects the host stars major rock-building elemental abundances (Fe, Mg, and Si). Contrasting CMF measures, therefore, shed light on the outcome diversity of planet formation from processes including mantle stripping, out-gassing, and/or late-stage volatile delivery. We present a statistically rigorous analysis of the consistency of these two CMF measures accounting for observational uncertainties of planet mass and radius and host-star chemical abundances. We find that these two measures are unlikely to be resolvable as statistically different unless the bulk density CMF is at least 40% greater than or 50% less than the CMF as inferred from the host star. Applied to 11 probable rocky exoplanets, Kepler-107c has a CMF as inferred from bulk density that is significantly greater than the inferred CMF from its host star (2$sigma$) and is therefore likely an iron-enriched super-Mercury. K2-229b, previously described as a super-Mercury, however, does not meet the threshold for a super-Mercury at a 1- or 2- $sigma$ level.
The masses, atmospheric makeups, spin-orbit alignments, and system architectures of extrasolar planets can be best studied when the planets orbit bright stars. We report the discovery of three bodies orbiting HD 106315, a bright (V = 8.97 mag) F5 dwarf targeted by our K2 survey for transiting exoplanets. Two small, transiting planets have radii of 2.23 (+0.30/-0.25) R_Earth and 3.95 (+0.42/-0.39) R_Earth and orbital periods of 9.55 d and 21.06 d, respectively. A radial velocity (RV) trend of 0.3 +/- 0.1 m/s/d indicates the likely presence of a third body orbiting HD 106315 with period >160 d and mass >45 M_Earth. Transits of this object would have depths of >0.1% and are definitively ruled out. Though the star has v sin i = 13.2 km/s, it exhibits short-timescale RV variability of just 6.4 m/s, and so is a good target for RV measurements of the mass and density of the inner two planets and the outer objects orbit and mass. Furthermore, the combination of RV noise and moderate v sin i makes HD 106315 a valuable laboratory for studying the spin-orbit alignment of small planets through the Rossiter-McLaughlin effect. Space-based atmospheric characterization of the two transiting planets via transit and eclipse spectroscopy should also be feasible. This discovery demonstrates again the power of K2 to find compelling exoplanets worthy of future study.
144 - Thierry Forveille 2010
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H]=-0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H]=-0.17), and Gl 676A ([Fe/H=0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5~Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses.
We report the discovery by the HATSouth network of HATS-18 b: a 1.980 +/- 0.077 Mj, 1.337 +0.102 -0.049 Rj planet in a 0.8378 day orbit, around a solar analog star (mass 1.037 +/- 0.047 Msun, and radius 1.020 +0.057 -0.031 Rsun) with V=14.067 +/- 0.040 mag. The high planet mass, combined with its short orbital period, implies strong tidal coupling between the planetary orbit and the star. In fact, given its inferred age, HATS-18 shows evidence of significant tidal spin up, which together with WASP-19 (a very similar system) allows us to constrain the tidal quality factor for Sun-like stars to be in the range 6.5 <= lg(Q*/k_2) <= 7 even after allowing for extremely pessimistic model uncertainties. In addition, the HATS-18 system is among the best systems (and often the best system) for testing a multitude of star--planet interactions, be they gravitational, magnetic or radiative, as well as planet formation and migration theories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا